首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrification and denitrification are important microbiological reactions of nitrogen. In this work, the kinetics of these reactions have been investigated based on a Monod-type expression involving two growth limiting substrates: ammonium nitrogen and dissolved oxygen for nitrification and nitrate nitrogen and dissolved organic carbon for denitrification. The kinetic constants and yield coefficients were evaluated for both these reactions. Past experimental work was used to determine the constants for the nitrification reaction. For the denitrification reaction, experiments were performed in a stirred tank reactor under conditions such that only one substrate was growth limiting. Steady-state values of the substrate concentrations in the reactor were determined at various dilution rates. These data were analyzed to obtain the kinetic and stoichiometric constants. From these constants it was concluded that in the range of nitrate nitrogen concentrations encountered in waste water, the denitrification reaction can be considered a first-order reaction. It was also found that three times as much organic carbon is required as nitrate nitrogen for complete nitrogen removal.  相似文献   

2.
Analysis of continuous culture methodology suggests that this potentially powerful tool for kinetic analysis can be improved by minimizing several inherent shortcomings. Medium background substrates — organic carbon, phosphate, and manganese — were shown to dominate kinetic observations at concentrations below chemical detection methods. Reactor wall growth, culture size distribution changes, sample removal-induced steady state perturbations, and limiting substrate leakage from organisms are treated in terms of kinetic measurement errors. Large variations in maximal growth rates and substrate uptake rates found are attributed to experimental protocol-induced transient states. Relationships are presented for correcting limiting substrate concentrations for lability during sampling, contamination with unreacted medium, and background substrate effects. Analytical procedures are discussed for improved measurement of limiting substrate kinetics involving enzymes, isotopes, and material balance manipulation. Relaxation methods as applied to continuous culture are introduced as a means for isolating separate rate constants describing net substrate transport and for evaluating cellular metabolite leakage. Low velocity growth, multiple substrate metabolism, and endogenous metabolism are discussed along with measurements showing that 1-month generation times for aquatic microorganisms can be quite normal and that the kinetics are compatible withμg/liter limiting substrate concentrations. The concept of regarding growth kinetics as the sum of several net accumulation processes is suggested.  相似文献   

3.
A dynamic model that predicts substrate and biomass concentration profiles across gel beads and from that the overall substrate consumption rate by the gel beads containing growing cells was evaluated with immobilized Nitrobacter agilis cells in an airlift loop reactor with oxygen as the limiting substrate. The model predictions agreed well with the observed oxygen consumption rates at three different liquid phase oxygen concentrations. Image analysis showed that 90% of the immobilized cells after 42 days of cultivation was situated in the outer shells in a film of 140 mum, while the bead radius was about 1 mm. The maximum biomass concentration in the outmost film of 56 mum was 11 kg . m(-3) gel.  相似文献   

4.
When a reversible reaction is catalyzed by a surface bound enzyme, the diffusion of both substrate and product can considerably modify the kinetic properties of the reaction. According to this theoretical analysis, the enzyme activity is decreased due to the presence of substrate and product concentration gradients in the enzyme microenvironment, and the relative kinetic importance of the two diffusion steps mainly depend on the value of a dimensionless criterion inversely proportional to the equilibrium constant. Moreover diffusional effects increase with increasing bound enzyme activity, but decrease with increasing substrate and product concentration. Analytical expressions are established for the limiting values of substrate and product concentrations in the enzyme microenvironment, as well as for the increase in half-maximal-activity substrate concentration in the presence of substrate and product diffusional limitations.  相似文献   

5.
In this article, a model was proposed to predict the average performance and biofilm density of a spherical bioparticle under substrate inhibition in a fluidized bed system. The average biofilm density and substrate consumption rates were predicted for a definite biofilm thickness and limiting substrate concentrations. A diffusion and reaction model was developed over the bioparticle with biofilm-density dependent effective diffusion coefficients for maximum substrate consumption theory. This theory predicts the optimum density of a biofilm to yield a maximum substrate consumption rate within the biofilm, developed for the first time with this study and experimentally verified. A good correlation was observed between the model prediction and experimental results for biofilm density and substrate consumption rates. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 319-329, 1997.  相似文献   

6.
Brain uptake of substrates other than glucose has been demonstrated in vivo in postnatal but not fetal life. In this study, brain uptake of potential alternative substrates beta-hydroxybutyrate and lactate was studied during 2 h substrate infusions in 10 chronically-catheterised fetal sheep at 135-141 days gestation. beta-hydroxybutyrate appeared to be taken up by the brain of 5 fetuses with spontaneously low arterial blood glucose concentrations, and produced by the brains of the 5 with higher glucose concentrations. Brain butyrate/oxygen quotients at the end of the infusions were directly related to fetal arterial blood glucose concentrations (r2 = 0.72, P less than 0.01. Brain butyrate/oxygen quotients were not related to the arterial beta-hydroxybutyrate concentrations at the beginning or end of the infusions. No brain uptake of lactate was demonstrated. This study suggests for the first time that the fetal brain in vivo may take up substrates other than glucose. The near term fetal sheep brain appears to take up beta-hydroxybutyrate only when arterial butyrate concentrations are high and glucose is low.  相似文献   

7.
A stopped flow kinetic analysis has been performed with a homogeneous protein fraction of plant glutamate dehydrogenase. The enzyme exerts strong negative cooperativity with ammonium as variable substrate. The limiting initial rate constants for low substrate concentrations, as calculated from the kinetic data, indicate that the catalytic efficiency of the enzyme increases at low ammonium concentrations. From this it becomes evident that the reductive amination reaction is highly adaptive to the ammonium environment.  相似文献   

8.
The chemistry of flavins and flavoproteins. Aerobic photochemistry   总被引:1,自引:0,他引:1       下载免费PDF全文
1. When a mixture of FMN and a reducing substrate (e.g. unprotonated amine) is illuminated oxygen is consumed. 2. The rate of oxygen uptake increases as oxygen concentration falls with some substrates (type I reaction), but with other substrates (typically aromatic compounds) the rate falls as the oxygen concentration falls (type II reaction). 3. The kinetics of type I reactions with EDTA, dl-alpha-phenylglycine and diethanolamine are all consistent with a mechanism in which the rate-determining step, hydrogen abstraction by the FMN triplet, is followed by rapid reoxidation of reduced FMN by oxygen. The reaction is faster at low oxygen concentrations because oxygen quenches the triplet. 4. The sensitivity of reaction rates to substituents in dl-alpha-phenylglycine can be described by a Hammett rho value of -0.6. 5. Individual rate constants for quenching and reaction of the FMN triplet with substrate were calculated (2.4x10(8) and 2.1x10(7)m(-1)s(-1) respectively for EDTA) on the assumption that oxygen quenches the triplet in a diffusion-controlled reaction. 6. The pH-dependences of oxygen uptake rates with six natural amino acids as substrates were measured. 7. Photoinactivations of l-glutamate dehydrogenase and d-amino acid oxidase by FMN were demonstrated.  相似文献   

9.
Growth of microorganisms on substitutable substrate mixtures display diverse growth dynamics characterized by simultaneous or preferential uptake of carbon sources. This article shows that cybernetic modeling concepts which were successful in predicting diauxic growth patterns can be extended to describe simultaneous consumption of substrates. Thus the growth of Escherichia coli on mixtures of glucose and organic acids such as pyruvate, fumarate, and succinate has been described successfully by the cybernetic model presented here showing both diauxic and simultaneous uptake when observed. The model also describes the changes in utilization patterns that occur under changing dilution rates, substrate concentrations, and models of preculturing. The model recognizes the importance of the synthesis of biosynthetic precursors in cell growth through a kinetic structure that is quite general for any mixture of carbon-energy sources. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
1. The substrate kinetic properties of cerebral hexokinases (mitochondrial and cytoplasmic) were studied at limiting concentrations of both glucose and MgATP(2-). Primary plots of the enzymic activity gave no evidence of a Ping Pong mechanism in three types of mitochondrial preparation tested (intact and osmotically disrupted mitochondria, and the purified mitochondrial enzyme), nor in the purified cytoplasmic preparation. 2. Secondary plots of intercepts from the primary plots (1/v versus 1/s) versus reciprocal of second substrate of the mitochondrial activity gave kinetic constants which differed from those obtained directly from the plots of 1/v versus 1/s or of s/v versus s, although the ratios of the derived constants were consistent. The kinetic constants obtained with the cytoplasmic enzyme from primary and secondary plots were consistent. 3. Deoxyglucose, as alternative substrate, inhibited cytoplasmic hexokinase by competition with glucose, but did not compete when MgATP(2-) was the substrate varied. The K(i) for deoxyglucose when glucose concentrations were varied was 0.25mm. 4. A range of ATP analogues was tested as potential substrates and inhibitors of hexokinase activity. GTP, ITP, CTP, UTP and betagamma-methylene-ATP did not act as substrates, nor did they cause significant inhibition. Deoxy-ATP proved to be almost as effective a substrate as ATP. AMP inhibited but did not act as substrate. 5. N-Acetyl-glucosamine inhibited all preparations competitively when glucose was varied and non-competitively when MgATP(2-) was varied. AMP inhibition was competitive when MgATP(2-) was the substrate varied and non-competitive when glucose was varied. 6. The results are interpreted as providing evidence for a random reaction mechanism in all preparations of brain hexokinase, cytoplasmic and mitochondrial. The kinetic properties and reaction mechanism do not change on extraction and purification of the particulate enzyme. 7. The results are discussed in terms of the participation of hexokinase in regulation of cerebral glycolysis.  相似文献   

11.
Industrial fermentations typically use media that are balanced with multiple substitutable substrates including complex carbon and nitrogen source. Yet, much of the modeling effort to date has mainly focused on defined media. Here, we present a structured model that accounts for growth and product formation kinetics of rifamycin B fermentation in a multi-substrate complex medium. The phenomenological model considers the organism to be an optimal strategist with an in-built mechanism that regulates the sequential and simultaneous uptake of the substrate combinations. This regulatory process is modeled by assuming that the uptake of a substrate depends on the level of a key enzyme or a set of enzymes, which may be inducible. Further, the fraction of flux through a given metabolic branch is estimated using a simple multi-variable constrained optimization. The model has the typical form of Monod equation with terms incorporating multiple limiting substrates and substrate inhibition. Several batch runs were set up with varying initial substrate concentrations to estimate the kinetic parameters for the rifamycin overproducer strain Amycolatopsis mediterranei S699. Glucose and ammonium sulfate (AMS) demonstrated significant substrate inhibition toward growth as well as product formation. The model correctly predicts the experimentally observed regulated simultaneous uptake of the substitutable substrate combinations under different fermentation conditions. The modeling results may have applications in the optimization and control of rifamycin B fermentation while the modeling strategy presented here would be applicable to other industrially important fermentations.  相似文献   

12.
A four-component, diffusion-reaction model with double Michaelis-Menten kinetics was used to describe the experimental data obtained from a laboratory biofilm, fluidized-bed nitrification reactor. Theory and experiment demonstrated that the stoichiometric ratio (3.5 mg O(2)/mg NH(4) (+)-N) can be employed as a criterion to determine whether the limiting substrate is oxygen or ammonia. For the present work, in the range of concentrations where limitation occurred, 4 mg/L NH(4) (+)-N and 14 mg/L O(2), the ratio of oxygen to ammonia in the bulk liquid determined which substrate was penetration-limiting-O(2) if <3.5 and NH(4) (+) if > 3.5. Halforder kinetics with respect to the limiting substrate described the apparent overall rates. Simulations provided biofilm concentration profiles which demonstrated the role of the oxygen-ammonia ratio. Experiments indicated that, generally, high NO(2) (-) concentrations can be expected. These depend on the residence time, biofilm area, and oxygen concentration. This dependency was investigated with the model, as was the parametric sensitivity with respect to the saturation constants. Particularly important for the NO(2) (-) levels were the ratios of the saturation constants for oxygen.  相似文献   

13.
Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF.  相似文献   

14.
A mathematical model of an aerobic biofilm reactor is presented to investigate the bifurcational patterns and the dynamical behavior of the reactor as a function of different key operating parameters. Suspended cells and biofilm are assumed to grow according to double limiting kinetics with phenol inhibition (carbon source) and oxygen limitation. The model presented by Russo et al. is extended to embody key features of the phenomenology of the granular‐supported biofilm: biofilm growth and detachment, gas–liquid oxygen transport, phenol, and oxygen uptake by both suspended and immobilized cells, and substrate diffusion into the biofilm. Steady‐state conditions and stability, and local dynamic behavior have been characterized. The multiplicity of steady states and their stability depend on key operating parameter values (dilution rate, gas–liquid mass transfer coefficient, biofilm detachment rate, and inlet substrate concentration). Small changes in the operating conditions may be coupled with a drastic change of the steady‐state scenario with transcritical and saddle‐node bifurcations. The relevance of concentration profiles establishing within the biofilm is also addressed. When the oxygen level in the liquid phase is <10% of the saturation level, the biofilm undergoes oxygen starvation and the active biofilm fraction becomes independent of the dilution rate. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
A simple dynamic model is proposed which will allow fermenters to be run at throughputs which fully utilize the mass transfer capabilities of the fermenters while not decreasing the yield from the substrate. The model is compared with one previously proposed, which was originally formulated for double substrate limitation when both substrates were supplied in the feed. Computer solutions of the model are given which show the effects of the parameters used. Experimental results from growing Candida utilis on a high concentration of glucose were found to be similar to those predicted by the model.  相似文献   

16.
We investigated the potential of the South African high-biomass Ni hyperaccumulator Berkheya coddii to phytoextract Co and/or Ni from artificial metalliferous media. Plant accumulation of both metals from single-element substrates indicate that the plant/media metal concentration quotient (bioaccumulation coefficient) increases as total metal concentrations increase. Cobalt was readily taken up by B. coddii with and without the presence of Ni. Nickel uptake was, however, inhibited by the presence of an equal concentration of Co. Bioaccumulation coefficients of Ni and Co for the single element substrates (total metal concentration of 1000 micrograms g-1) were 100 and 50, respectively. Cobalt phytotoxicity was observed above a total Co concentration in plant growth media of 20 micrograms g-1. Elevated Co concentrations significantly decreased the biomass production of B. coddii without affecting the bioaccumulation coefficients. The mixed Ni-Co substrate produced bioaccumulation coefficients of 22 for both Ni and Co. Cobalt phytotoxicity in mixed Ni-Co substrate occurred above a total Co concentration of 15 micrograms g-1. When grown in the presence of both Ni and Co, the bioaccumulation coefficients of each metal were reduced, as compared to single-element substrate. This may indicate competition for binding sites in the root zone. The interference relationship between Ni and Co uptake demonstrated by B. coddii suggests a significant limitation to phytoextraction where both metals are present.  相似文献   

17.
A kinetic study of the activity of mushroom polyphenol oxidase in an organic system was carried out to obtain detailed enzyme kinetic data in relation to optimization of reaction conditions and substrate specificity. A simple method for consistent measurement of reaction rates in the heterogeneous enzyme/organic solvent system (consisting of immobilized polyphenol oxidase and a hydrated solution of the substrate in chloroform) was designed. The aqueous content of the system was optimized using p-cresol as the substrate. With this system, a crude extract of Agaricus bisporus was used to hydroxylate and oxidize a range of selected p-substituted phenolic substrates, yielding o-quinone products. Michaelis-Menten kinetics were used to obtain apparent K(M) and V(max) values with respect to each of these substrates. Results from this analysis indicated a correlation between the enzymic kinetic parameters obtained and the steric requirements of the substrates, which could be rationalized in terms of the restricted flexibility of the enzyme when it is in chloroform and also in terms of substrate and solvent hydrophobicity. In the course of the investigation UV molar absorption coefficients of several o-quinones were measured by a novel method: (1)H nuclear magnetic resonance (NMR) spectroscopy was employed to determine component concentrations in reaction mixtures resulting from the transformation of phenols by polyphenol oxidase in chloroform. Thus the UV molar absorption coefficients could be obtained directly, avoiding the necessity to isolate the water-sensitive, unstable o-quinones. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
Butanediol production by Aerobacter aerogenes NRRL B199 grown on glucose requires an optimal rate of aeration for the obtention of butanediol 2, 3. In the absence of air, Aerobacter aerogenes NRRL B199 growth and production are weak. Agitation-aeration is necessary for producing the biomass, but an excess of oxygen proves to be toxic with regard to metabolite production. Oxygen is a limiting substrate with regard to growth and an inhibitor with regard to the specific metabolite productivity. This observation is discussed from a kinetic stand point and in relation to the search for the optimum oxygen transfer coefficient (K(L)a), which is found to be in the range of 50-100h(-1). It has also been observed that K(L)a increases during the fermentation cycle. The initial substrate concentration effects the yield production of biomass and butanediol production. Low yields of butanediol are obtained at low initial sugar concentrations, but good yields of butanediol are obtained (0.45 g/g) at high concentrations of glucose (195 g/L). Carbon substrates and butanediol are inhibitors of cell growth while butanediol is not quite an inhibitor of the specific rate of butanediol production for the range of butanediol of 0-100 g/L.  相似文献   

19.
Controlled substrate addition was used to maintain mixed microbial cultures in fermenters at either pH 7.0 or 70% dissolved oxygen saturation. Control of pH permitted a greater volume of substrate to be processed. Ammonium nitrogen concentrations were similar for both fermenters but concentrations of oxidized nitrogen varied. Nitrification/denitrification sequences appeared to be initiated by unscheduled changes in dissolved oxygen concentration. It was possible to maintain a steady state with respect to a controlled parameter and end-product quality but other parameters fluctuated.  相似文献   

20.
A two-stage deterministic model of the growth of Saccharomyces cerevisiae is presented. The cell cycle of this organism was used to suggest the basic model structure. The model represents the preparatory processes of substrate uptake and conversion separately from replication and division. The regulation of the fraction of the culture devoted to each of these broad areas of metabolism, and the overall growth rate, is related to the nature and availability of the energy substrate. The simulation of respiration and glycolysis is achieved by including two alternative energy producing pathways. The regulation of these pathways is described in terms of the postulated primary regulation of the proportion of the culture required for substrate uptake and conversion, and the overall kinetic constants for each pathway. This regulation is dictated primarily by the growth rate rather than the nature or concentration of the energy substrate. The model successfully describes both batch and continuous growth of S. cerevisiae under conditons of glucose limitation and oxygen excess. A preliminary assessment indicates that adjustment of the relevant parameters will allow the model to describe the growth of S. cerevisiae on other sugars and under oxygen limitation. Similarly the model could be expected to describe the growth characteristics of other yeast species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号