首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
To elucidate the ultrastructural modifications of the gill epithelium during smoltification, gills of the Atlantic salmon (Salmo salar) were examined by electron microscopy at three stages of this process, which were defined as follows: "parrs" were freshwater fish that had not yet started their transformation; "freshwater smolts" were freshwater fish that were ready to enter seawater; and "seawater smolts" were smolts that had been transferred from fresh water and maintained for 4 days in seawater (35%). In the gill epithelium of parrs, there were two types of chloride cells. The large chloride cells contained deeply stained mitochondria and numerous apical, irregular, dense, membrane-bound bodies that formed 77% of the chloride cell population and were distinguished easily from small chloride cells that have distinctly paler mitochondria and no dense bodies in their apical cytoplasm. In freshwater smolts, the large chloride cells formed 95% of the chloride-cell population. In contrast to the small chloride cells that were not modified, they almost doubled in size. Their tubular system developed extensively to form a tight network with regular meshes significantly smaller than those observed in parr chloride cells. Forty percent of the large chloride cells were associated with a new type of cell, the accessory cell, to which they were bound by shallow apical junctions. Half of these accessory cells were not seen to be in contact with the external medium. In seawater smolts, 80% of the large chloride cells were associated with accessory cells. Most accessory cells reached the external medium and sent numerous cytoplasmic interdigitations within the apical portion of the adjacent chloride cells. As a result, a section through the apical portion of the chloride cells and their associated accessory cells revealed a mosaic of interlocked cell processes bound together by an extended, shallow apical junction. It was concluded that the Atlantic salmon develops in fresh water most of the ultrastructural modifications of the gill epithelium which in most euryhaline fish are triggered by exposure to seawater. The effective transfer into seawater would act only as a final stimulus to achieve some adequacy between the freshwater smolt and its new environment.  相似文献   

2.
Two types of mitochondria-rich cells were identified in the gill epithelium of the freshwater-adapted rainbow trout, Salmo gairdneri, after selective impregnation of their tubular system with reduced osmium. A first type consisted of large cells with a poorly developed and loosely anastomosed tubular system; thus, that resembled the chloride cells commonly encountered in the gill epithelium of freshwater-adapted euryhaline fishes. A second type comprised smaller cells with an extensively developed and tightly anastomosed tubular system. These never reached the basal lamina of the gill epithelium and were adjacent to chloride cells, to which they were linked by shallow apical junctions (100-200 nm); thus, they resembled accessory cells, which are currently found in the gill epithelium of seawater-adapted fishes but are usually lacking in freshwater living fishes. Transfer of the freshwater-adapted trout into seawater induced the proliferation of the tubular system in the chloride cells and the formation of lateral plasma membrane interdigitations between accessory cells and the apical portion of the chloride cells. The length of the apical junction sealing off this extended intercellular space was reduced to 20-50 nm. The tubular system of the accessory cells was not modified. The extension of the tubular system in the chloride cells of the seawater-adapted fishes indicated that, as in most euryhaline fishes, these cells have a role in the adaptation of the rainbow trout to seawater. In contrast, the function of the presumptive accessory cells in freshwater trout remains to be established.  相似文献   

3.
Ultrastructural features of branchial chloride cells in Oreochromis niloticus (Linnaeus) and O. mossambicus (Peters) adapted to both fresh water and sea water were compdred. In freshwater adapted fish of both species chloride cells showed similar morphological features. Multicellular complexes made of a mature chloride cell and one or more accessory cells sharing a single apical crypt have been observed. Whereas high percentages of 0. mossambicus survived at maximum salinity only a few individuals of 0. niloticus showed the capacity to adapt to sea water. In the seawater-adapted individuals of 0. niloficus and 0. rnossambicus the chloride cells showed a two- and three-fold increase in sizei. respectively. Most chloride cells are organized in large multi-cellular complcxcs with apical interdigitations of accessory cells and 'leaky junctions'. These results indicate that the difference in euryhalinity of the species studied is related to functional rather than structural differences.  相似文献   

4.
The ultrastructure of the gill primary lamellae of juvenile Atlantic salmon was examined during the parr-smolt transformation and for 42 days after smolts were exposed to sea water. Scanning electron microscopy indicated that primary lamellae were characterized by rough convoluted surfaces that became rougher throughout the experimental period and that crypts did begin to form in freshwater fish. Crypt formation increased in sea water.
Transmission electron microscopy indicated that parr preadapt for life in sea water in part by changes in chloride cells. Chloride cells show an elaboration of rough endoplasmic reticulum in fresh water and a decline of rough endoplasmic reticulum after 42 days of sea water exposure. The tubular membrane system becomes well developed in fresh water, and apical vesicles become abundant only after seawater exposure. Mitochondria are both spherical and elongate through the period and contain well developed cristae. No evidence of mitochondrial rupture was observed. The junctions between chloride cells and adjacent cells were characterized in fresh water by long tight junctions with desmosomes. This type of junction continued in sea water and was the norm between chloride cells and accessory cells after 42 days of seawater exposure. While leaky junctions appeared to be forming, no evidence was found of membrane interdigitation between accessory cells and chloride cells after 42 days of seawater exposure. It also appeared that seawater exposure influenced the number of chloride cells exposed to the external milieu.
Pavement cells showed an elaboration in fresh water of free ribosomes and rough endoplasmic reticulum and these elements became less prominent after seawater exposure.  相似文献   

5.
Summary Degeneration and death of branchial epithelial cells were studied in an African cichlid fish. In both freshwater and seawater fish the superficially located pavement cells are sloughed off at the end of their lifecycle. This process is preceded by degeneration via a process of cytoplasmic shrinkage and condensation related to apoptotic (physiologically controlled) cell death. The chloride cells are pleomorphic, i.e., accessory, mature, and degenerating cells. Degeneration of chloride cells mainly occurs by apoptosis. Degenerating cells show shrinkage and densification of cytoplasm and nuclei, and swelling of the tubular system; these cells are then separated from the ambient water by pavement cells. They are finally phagocytosed and digested by macrophages. Apoptosis of chloride cells, but not of pavement cells, is greatly stimulated when the fish are in seawater; this reflects an increase in cellular turnover of the chloride cells. Accidental cell death (necrosis) of pavement cells or chloride cells is rarely observed in fully adapted freshwater and seawater fish. Its incidence increases in the first few days following transfer of fish from fresh water to seawater.  相似文献   

6.
Summary The mitochondria-rich (chloride) cells have been found to be present in the gill epithelia of four species of stenohaline fresh water teleosts. The cytoplasm of these chloride cells contains an extensive network of cytoplasmic tubules which communicate with intercellular spaces bordering the lateral and basal cell surfaces. Numerous vesicles with fairly electron-dense interiors are also present in the apical cytoplasm of chloride cells. The apical surface of a chloride cell forms an apical pit, but the lumen of the pit does not appear to be in continuity with the interior of the apical vesicles and tubules inside the cell.When Carassius auratus were kept in 100, 200, 300, and 400 mOsm-diluted sea water for a month, no appreciable changes occurred in the number and fine structure of the chloride cells, except for a dilation of the apical vesicles and a slight decrease in diameter of the cytoplasmic tubules in these cells in the fishes kept in 300 and 400 mOsm.These results suggest that chloride cells may be a rather common occurrence in the gill epithelia of stenohaline fresh water teleosts, and may function in ion-transport in these fishes in fresh water environments.  相似文献   

7.
Various species of teleostean fishes were adapted to fresh or salt water and their gill surface epithelium was examined using several techniques of electron microscopy. In both fresh and salt water the branchial epithelium is mostly covered by flat respiratory cells. They are characterized by unusual outer membrane fracture faces containing intramembranous particles and pits in various stages of ordered aggregation. Freeze fracture studies showed that the tight junctions between respiratory cells are made of several interconnecting strands, probably representing high resistance junctions. The organization of intramembranous elements and the morphological characteristics of the junctions do not vary in relation to the external salinity. Towards the base of the secondary gill lamellae, the layer of respiratory cells is interrupted by mitochondria-rich cells ("chloride cells"), also linked to respiratory cells by multistranded junctions. There is a fundamental reorganization of the chloride cells associated with salt water adaptation. In salt water young adjacent chloride cells send interdigitations into preexisting chloride cells. The apex of the seawater chloride cell is therefore part of a mosaic of sister cells linked to surrounding respiratory cells by multistranded junctions. The chloride cells are linked to each other by shallow junctions made of only one strand and permeable to lanthanum. It is therefore suggested that salt water adaptation triggers a cellular reorganization of the epithelium in such a way that leaky junctions (a low resistance pathway) appear at the apex of the chloride cells. Chloride cells are characterized by an extensive tubular reticulum which is an extension of the basolateral plasma membrane. It is made of repeating units and is the site of numerous ion pumps. The presence of shallow junctions in sea water-adapted fish makes it possible for the reticulum to contact the external milieu. In contrast in the freshwater-adapted fish the chloride cell's tubular reticulum is separated by deep apical junctions from the external environment. Based on these observations we discuss how solutes could transfer across the epithelium.  相似文献   

8.
Teleosts, the bony fishes, inhabit both freshwater and seawaterenvironments. Some euryhaline fish, such as Fundulus heteroclitus,alternate between the two milieux several times daily. Regardlessof adaptation, the gills of these animals possess a highly specializedcell type called the chloride cell. This cell contains numerousmitochondria and exhibits a greatly amplified basolateral cellsurface richly endowed with Na,K-ATPase. Recent studies on isolatedopercular epithelia containing chloride cells have demonstratedactive chloride secretion and passive transepithelial sodiummovements, and have established the chloride secretory roleof this cell type in seawater-adapted teleosts. Current modelssuggest that chloride transport occurs via a transcellular route.Seawater chloride cells exist in multicellular units and sharesimple, shallow tight junctions which are thought to be theroute for passive sodium movement. Freshwater chloride cells,whose function remains to be elucidated, are generally describedas existing in a unicellular configuration. However, recentobservations in Fundulus heteroclitus adapted to salinitiesas low as 1% sea water reveal that chloride cells persist inmulticellular complexes with apical crypts. Strikingly, tightjunctions between chloride cells in this freshwater environmentare deep  相似文献   

9.
It is very interesting that the only extant marine amphibian is the marine frog, Fejervarya cancrivora. This study investigated the reasons for this apparent rarity by conducting a phylogenetic tree analysis of the complete mitochondrial genomes from 14 amphibians, 67 freshwater fishes, four migratory fishes, 35 saltwater fishes, and one hemichordate. The results showed that amphibians, living fossil fishes, and the common ancestors of modern fishes are phylogenetically separated. In general, amphibians, living fossil fishes, saltwater fishes, and freshwater fishes are clustered in different clades. This suggests that the ancestor of living amphibians arose from a type of primordial freshwater fish, rather than the coelacanth, lungfish, or modern saltwater fish. Modern freshwater fish and modern saltwater fish were probably separated from a common ancestor by a single event, caused by crustal movement.  相似文献   

10.
Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species.  相似文献   

11.
The ion regulation mechanisms of fishes have been recently studied in zebrafish (Danio rerio), a stenohaline species. However, recent advances using this organism are not necessarily applicable to euryhaline fishes. The euryhaline species medaka (Oryzias latipes), which, like zebrafish, is genetically well categorized and amenable to molecular manipulation, was proposed as an alternative model for studying osmoregulation during acclimation to different salinities. To establish its suitability as an alternative, the present study was conducted to (1) identify different types of ionocytes in the embryonic skin and (2) analyze gene expressions of the transporters during seawater acclimation. Double/triple in situ hybridization and/or immunocytochemistry revealed that freshwater (FW) medaka contain three types of ionocyte: (1) Na+/H+ exchanger 3 (NHE3) cells with apical NHE3 and basolateral Na+-K+-2Cl? cotransporter (NKCC), Na+-K+-ATPase (NKA) and anion exchanger (AE); (2) Na+-Cl? cotransporter (NCC) cells with apical NCC and basolateral H+-ATPase; and (3) epithelial Ca2+ channel (ECaC) cells [presumed accessory (AC) cells] with apical ECaC. On the other hand, seawater (SW) medaka has a single predominant ionocyte type, which possesses apical cystic fibrosis transmembrane conductance regulator (CFTR) and NHE3 and basolateral NKCC and NKA and is accompanied by smaller AC cells that express lower levels of basolateral NKA. Reciprocal gene expressions of decreased NHE3, AE, NCC and ECaC and increased CFTR and NKCC in medaka gills during SW were revealed by quantative PCR analysis.  相似文献   

12.
Morphology of branchial chloride cells in the freshwater teleosts Plecoglossus altivelis, Cyprinus carpio, and Oreochromis mossambicus was studied by light and transmission electron microscopy. The chloride cell has an apical membrane directly in contact with the outer medium. Generally, two or more neighboring chloride cells share an apical pit, forming a multicellular complex. The chloride cells form a multicellular complex in which cells differ in cytoplasmic electron density, development of tubular system, and in cell size. Chloride cells are linked by junctions which are shallower than the tight junctions that occur between neighboring pavement cells or between pavement and chloride cells. Multicellular complexes of chloride cells create additional paracellular pathways marked apically by the shallower junctions. Since junctional structure affects transepithelial permeability, development of multicellular complexes of chloride cells in freshwater fishes may be related to the transport of some substances as in the gills of marine fishes.  相似文献   

13.
Modifications in the chloride (mitochondria‐rich) and pavement cells of the gill epithelia of the Adriatic sturgeon Acipenser naccarii after their transfer under hypertonic environmental conditions (salinity 35) were examined by light and electron microscopy. In contrast to freshwater specimens, seawater‐acclimated fish showed a marked increase in the number and size of chloride cells. Ultrastructural modifications included: presence of a slightly invaginated apical crypt, a darker cytoplasm, a more compact tubular system, a major increase in cisternae from Golgi apparatus stacks and flattened‐out sacs with dilated ends that produced an increase in lateral and basal cell surfaces. All these changes indicated enhanced cellular activity. Pavement cells, which largely covered the chloride cells on the gill filament and lamella, exhibited a complex system of microridges on their apical surface. Typical features included numerous desmosomes that characterized the intercellular junction, and the presence in the apical cytoplasm of bundles of filaments and of electro‐dense vesicles in freshwater fish or clear vesicles in seawater‐acclimated animals.  相似文献   

14.
 The adult freshwater branchiopod, Caenestheriella gifuensis, has, as respiratory organs, fifteen pairs of slender cone-shaped gills composed of a thick epithelium. The silver nitrate/nitric acid technique revealed that the gill epithelium consisted of two kinds of cell, types I and II, which were alternately arranged with irregular interdigitations to form a unique, daisy pattern. Only type I cells were darkly stained by this technique, indicating high permeability of these cells to chloride ions and appearing to be responsible for the ion transport and osmoregulation. Further, electron microscopy disclosed fine structural characteristics of the two distinct types of epithelial cell covered by an extremely thin and soft cuticle layer, suggesting high permeability to gases and ions. The type I epithelial cell was characterized by an abundance of mitochondria, well-developed infoldings of the basal cell membrane exceeding two-thirds of the epithelial thickness, (which produce a magnification of the basolateral surface area of the cell), sparse microvillous projections of the apical border, and complicated interdigitations with the other type of epithelial cell. In the type II epithelial cell, on the other hand, these characteristics were less developed. These results suggest that in addition to their respiratory function, type I epithelial cells are of the ion-transporting type and play an important role in the active absorption of electrolytes to maintain a constant osmotic pressure of the hemolymph in extremely salt-deficient, freshwater environments. The type II epithelial cells may function mostly as respiratory epithelial cells. Accepted: 20 November 1996  相似文献   

15.
Wales B 《Tissue & cell》1997,29(4):439-447
Mitochondria-rich cells of the mid-trunk region of herring larvae, as revealed by DASPMI staining under fluorescent microscopy, were identified as chloride cells. The chloride cells were generally solitary, and seldom made direct contact with each other. The shape of the cells varied with position on the body wall, those in dorsal locations being more compressed in the apical/basal direction. The structure of the chloride cells was similar to that described for other teleost species but there were considerable differences between ventral and dorsal cells. The volume fraction of mitochondria and diameters of mitochondria, cristae, and terminal expansions of cristae were all smaller in the dorsal cells. Tubular network density was relatively constant whilst smooth endoplasmic reticulum (SER) density and vesicotubular density, of the subapical cytoplasm, exhibited a high variation which did not correlate with the presence or absence of accessory cells. The apical membranes of both cell types were flush with the epithelium and did not form a crypt, even when interdigitating processes of an accessory cell were present. Accessory cell interdigitations were generally observed for the apical membrane of ventral cells but were seldom observed in the more dorsal cells of the segmental bands. The ultrastructural evidence suggests that the ventral cells are functional in ion pumping whereas the majority of chloride cells of the dorsal segmental bands were probably not functional in ion pumping.  相似文献   

16.
Summary The ultrastructure and density of chloride cells in the gill, opercular epithelium, and opercular skin of the euryhaline self-fertilizing fish Rivulus marmoratus (Cyprinodontidae) were studied with electron and fluorescence microscopy. R. marmoratus raised from birth in 1, 50, 100, and 200% seawater were compared. Chloride cells from fish raised in each of the four salinities exhibited an invaginated pit structure at the apical crypt. Multicellular complexes were present in the 1% seawater group and in those fish raised in higher salinities where elaborate interdigitations were seen between cells. Chloride cells from gills of fish raised in 200% seawater had a significantly higher percentage of their cytoplasmic volume composed of mitochondria than did those from fish raised in 1% seawater (69.9% vs 37.4%). The opercular skin and opercular epithelium had the same density of chloride cells (4.2×104-4.5×104 chloride cells/cm2), and this number did not vary significantly with increased salinity. The opercular skin thus appears far more responsive to environmental salinity than the opercular epithelium. Chloride cells from the opercular epithelium of fish raised in 200% seawater were found to be 39% larger than those from fish raised in 1% seawater, whereas the chloride cells from the opercular skin of the 200% seawater group were 107% larger than those from the 1% seawater group.  相似文献   

17.
Euryhaline teleosts rapidly regulate their ion flux at the chloride cells on entry to different salinities. The external trigger(s) for the rapid opening and closing of the chloride cell apical surface, the site of salt secretion, were examined in the skin of the mudskipper. With DASPEI (a mitochondrial probe) and Concanavalin-A (an apical surface marker of chloride cells), chloride cells were classified into two groups: those in contact and those not in contact with the external water. The fraction of chloride cells in contact with the water increased dramatically 1.5 h after transfer to seawater, and similarly after transfer to 10 mmol x l(-1) CaCl(2) solution. In comparison, transfer to 1.1 mol x l(-1) mannitol, 0.5 mol x l(-1) NaCl or 50 mmol x l(-1) MgCl(2) resulted in increases of only 40-60% of those in the seawater-transfer group. After return of the fish from 10 mmol x l(-1) CaCl(2) to freshwater, the cells in contact with the water decreased. Environmental Ca(2+) is the trigger for the morphological oscillation of chloride cell apical surface, presumably through modifications in Ca(2+) flux.  相似文献   

18.
We conducted salinity choice trials with the stenohaline marine species Takifugu snyderi to test their freshwater (FW) entry frequency in relation to starvation. The fish preferred to enter non-natal FW rather than remain in seawater. No relationship was detected between starvation and FW entry behaviour. Our results provide new empirical evidence of a stenohaline fish entering a non-natal osmotic environment. Further research on the entry of stenohaline species such as this one into lethal environments may help determine if this might help promote the evolution of diadromous life histories.  相似文献   

19.
In water of varying ion content, the gills and kidney of fishes contribute significantly to the maintenance of salt and water balance. However, little is known about the molecular architecture of the tight junction (TJ) complex and the regulation of paracellular permeability characteristics in these tissues. In the current studies, puffer fish (Tetraodon biocellatus) were acclimated to freshwater (FW), seawater (SW) or ion-poor freshwater (IPW) conditions. Following acclimation, alterations in systemic endpoints of hydromineral status were examined in conjunction with changes in gill and kidney epithelia morphology/morphometrics, as well as claudin TJ protein mRNA abundance. T. biocellatus were able to maintain endpoints of hydromineral status within relatively tight limits across the broad range of water ion content examined. Both gill and kidney tissue exhibited substantial alterations in morphology as well as claudin TJ protein mRNA abundance. These responses were particularly pronounced when comparing fish acclimated to SW versus those acclimated to IPW. TEM observations of IPW-acclimated fish gills revealed the presence of cells that exhibited the typical characteristics of gill mitochondria-rich cells (e.g. voluminous, Na+-K+-ATPase-immunoreactive, exposed to the external environment at the apical surface), but were not mitochondria-rich. To our knowledge, this type of cell has not previously been described in hyperosmoregulating fish gills. Furthermore, modifications in the morphometrics and claudin mRNA abundance of kidney tissue support the notion that spatial alterations in claudin TJ proteins along the nephron of fishes will likely play an important role in the regulation of salt and water balance in these organisms.  相似文献   

20.
Two types of chloride cells were identified in the gill epithelium of freshwater-adapted guppies. One type, referred to as an "alpha-chloride cell," was a pale, elongated cell located at the base of the secondary lamella in close contact with the arterioarterial pillar capillaries. In its cytoplasm, membranous tubules in continuity with its basolateral plasma membrane formed an extended tridimensional network. The vesiculotubular system (Pisam: Anat. Rec. 200:401-414, 1981) consisted of a few tubules and vesicles located next to the apical plasma membrane. A second type, referred to as a "beta-chloride cell," was a darker, ovoid cell located in the interlamellar region of the primary epithelium facing the central venous sinus. Membranous tubules in continuity with the basolateral plasma membrane were unevenly distributed in the cytoplasm. A prominent vesiculotubular system composed of numerous vesicles and tubules was found between the Golgi apparatus and the apical surface. During seawater adaptation, the alpha-chloride cells increased in size and progressively transformed into characteristic "seawater alpha-chloride cells" with a well-developed, regular, tight tubular network and numerous vesicles and tubules of the vesiculotubular system accumulated below the apical pit. The beta-chloride cells underwent a progressive degeneration and disappeared. Thus, in freshwater-adapted guppies, there are two types of chloride cells, alpha and beta, respectively, related to the arterial and the venous vessels, whereas in seawater-adapted fishes, a single type of cell, the alpha-chloride cell, was related to both the arterial and venous channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号