首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A challenge facing the biofuel industry is to develop an economically viable and sustainable biorefinery. The existing potential biorefineries in Louisiana, raw sugar mills, operate only 3 months of the year. For year-round operation, they must adopt other feedstocks, besides sugar cane, as supplemental feedstocks. Energy cane and sweet sorghum have different harvest times, but can be processed for bio-ethanol using the same equipment. Juice of energy cane contains 9.8% fermentable sugars and that of sweet sorghum, 11.8%. Chemical composition of sugar cane bagasse was determined to be 42% cellulose, 25% hemicellulose, and 20% lignin, and that of energy cane was 43% cellulose, 24% hemicellulose, and 22% lignin. Sweet sorghum was 45% cellulose, 27% hemicellulose, and 21% lignin. Theoretical ethanol yields would be 3,609 kg per ha from sugar cane, 12,938 kg per ha from energy cane, and 5,804 kg per ha from sweet sorghum.  相似文献   

2.

Background

Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution.

Results

An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk.

Conclusions

A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.
  相似文献   

3.
Experiments based on a 23 central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar–alcohol mill. The independent variables selected for study were temperature, varied from 112.5°C to 157.5°C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.  相似文献   

4.
Sugarcane bagasse (SCB) was pretreated with liquid hot water (LHW) and aqueous ammonia (AA), with the objective of investigating the influence of hemicellulose and lignin removal on the enzymatic digestibility and sugar recovery. The experimental results show that LHW and aqueous ammonia have a good performance in terms of hemicellulose dissolution and lignin removal respectively. The biggest xylan recovery of 74.3 % was obtained for LHW pretreatment at 160 °C, 5 %?w/v for 20 min with the xylan dissolution of 83.1 %. And the biggest lignin removal of 84.0 % was obtained for aqueous ammonia pretreatment at 160 °C, 10 %?w/v for 60 min. Moreover, the aperture and surface area of the sample were enlarged by the liquid hot water, which improves the accessibility of the substrate to the enzyme. The lignin removal caused by aqueous ammonia pretreatment can reduce the absorption of enzyme. In addition, the correlation between the compositional change and the enzymatic digestibility indicates that the removal of hemicellulose was more effective than lignin for destruction of the hemicellulose–lignin–cellulose structure.  相似文献   

5.
Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16?% at pretreatment and 8?% at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2?g/100?g SB; 210?°C; 10?min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6?g/l or 84.7?% of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3?% and 89.6?%, respectively.  相似文献   

6.
Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline‐sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:890–895, 2013  相似文献   

7.
本研究尝试将氨基磺酸应用于甘蔗渣预处理,探究其作为酸预处理试剂对甘蔗渣成分和酶解的影响。氨基磺酸预处理最优条件为浓度3%,温度121℃,预处理1 h。在该条件下,甘蔗渣的固体回收率为64.45%,半纤维素和木质素去除率分别为70.81%和25.10%,纤维素损失率仅7.56%。与硫酸、盐酸预处理相比,氨基磺酸的半纤维素和木质素去除率不如硫酸、盐酸预处理,但固体回收率更高,纤维素损失率低,能保留更多纤维素有效成分。进一步酶解显示,氨基磺酸预处理的纤维素转化率高于硫酸、盐酸预处理。氨基磺酸作为一种新的酸预处理试剂,在木质纤维素降解上有良好应用前景。  相似文献   

8.
The technique of autohydrolysis steam explosion was examined as a means for pretreatment of sugarcane bagasse. Treatment conditions were optimized so that following enzymatic hydrolysis, pretreated bagasse would give 65.1 g sugars/100 g starting bagasse. Released sugars comprised 38.9 g glucose, 0.6 g cellobiose, 22.1 g xylose, and 3.5 g arabinose, and were equivalent to 83% of the anhydroglucan and 84% of the anhydroxylan content of untreated bagasse. Optimum conditions were treatment for 30 S with saturated steam at 220 degrees C with a water-to-solids ratio of 2 and the addition of 1 g H(2)SO(4)/100 g dry bagasse. Bagasse treated in this manner was not inhibitory to fermentation by Saccharomyces uvarum except at low inoculum levels when fermentation time was extended by up to 24 h. Pretreated saccharified bagasse was inhibitory to Pachysolen tannophilus and this was attributed to the formation of acetate from the hydrolysis of acetyl groups present in hemicellulose. The major advantage of the pretreatment is the achievement of high total sugar yield with moderate enzyme requirement and only minor losses due to sugar decomposition.  相似文献   

9.
To release sugars effectively from sweet sorghum bagasse (SSB), a cellulose solvent and organic solvent‐based lignocellulose fractionation pretreatment approach was studied using response surface methodology (RSM). Based on RSM's central composite design, a batch experimental matrix was set up to determine the effects of reaction time (20–60 min) and temperature (40–60 °C) on delignification, total reducing sugar yield, glucan digestibility, and overall glucose yields following a pretreatment‐hydrolysis process. The optimum pretreatment conditions of 50 °C and 40 min led to 51.4% delignification, 86% overall glucose yield, and 61% overall xylose yield. An effort has also been made to obtain predictive models to illustrate the correlation between independent and dependent variables using RSM. The significance of the correlations and adequacy of these models were statistically tested for the selected objective functions. The optimum pretreatment condition predicted by the model was 49.1 °C and 39.2 min which matched the experimental data well. Results from this study can be applied to large scale biorefineries using sugars released from SSB for producing various biofuels. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:367–375, 2014  相似文献   

10.
Abaca fibre polysaccharides were fractionated into water soluble, pectic, 1% NaOH soluble, hemicellulosic and cellulose fractions by extraction with hot water, dilute hydrochloric acid (pH 1.6), aqueous 1% NaOH and 17.5% NaOH, respectively. Cellulose (60.4–63.6%) and hemicelluloses (20.8%) were the major polysaccharides in abaca fibres. The hot water soluble polysaccharides contained noticeable amounts of pectic substances and a large proportion of neutral polysaccharides. The pectic polysaccharide preparation was enriched in both galacturonic acid and neutral sugars, including xylose, glucose, galactose, arabinose, and rhamnose. Extraction of the fibre with aqueous 1% NaOH produced the hemicellulose–lignin complex, which was enriched in xylose and, to a lesser extent, glucose-, arabinose- and galactose-containing polysaccharides, together with 7.6% associated lignin. Further extraction of the delignified fibre residue with aqueous 17.5%. NaOH removed the hemicellulose fractions, which were strongly enriched in xylose-containing polysaccharides. Besides ferulic and p-coumaric acids, six other phenolic monomers were also detected in the mixtures of alkaline nitrobenzene oxidation of associated lignin in all the polysaccharide fractions. The content of bound lignin in water soluble, pectic, and 1% NaOH soluble polysaccharides (Fractions 1, 2, and 3), isolated directly from the lignified fibres, was 12 times that of the hemicellulosic preparations (Fractions 4 and 5) isolated from the delignified fibre residues.  相似文献   

11.
In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB.  相似文献   

12.
A low temperature alkali pretreatment method was proposed for improving the enzymatic hydrolysis efficiency of lignocellulosic biomass for ethanol production. The effects of the pretreatment on the composition, structure and enzymatic digestibility of sweet sorghum bagasse were investigated. The mechanisms involved in the digestibility improvement were discussed with regard to the major factors contributing to the biomass recalcitrance. The pretreatment caused slight glucan loss but significantly reduced the lignin and xylan contents of the bagasse. Changes in cellulose crystal structure occurred under certain treatment conditions. The pretreated bagasse exhibited greatly improved enzymatic digestibility, with 24-h glucan saccharification yield reaching as high as 98% using commercially available cellulase and β-glucosidase. The digestibility improvement was largely attributed to the disruption of the lignin-carbohydrate matrix. The bagasse from a brown midrib (BMR) mutant was more susceptible to the pretreatment than a non-BMR variety tested, and consequently gave higher efficiency of enzymatic hydrolysis.  相似文献   

13.
Optimization of pH controlled liquid hot water pretreatment of corn stover   总被引:4,自引:0,他引:4  
Controlled pH, liquid hot water pretreatment of corn stover has been optimized for enzyme digestibility with respect to processing temperature and time. This processing technology does not require the addition of chemicals such as sulfuric acid, lime, or ammonia that add cost to the process because these chemicals must be neutralized or recovered in addition to the significant expense of the chemicals themselves. Second, an optimized controlled pH, liquid hot water pretreatment process maximizes the solubilization of the hemicellulose fraction as liquid soluble oligosaccharides while minimizing the formation of monomeric sugars. The optimized conditions for controlled pH, liquid hot water pretreatment of a 16% slurry of corn stover in water was found to be 190 degrees C for 15 min. At the optimal conditions, 90% of the cellulose was hydrolyzed to glucose by 15FPU of cellulase per gram of glucan. When the resulting pretreated slurry, in undiluted form, was hydrolyzed by 11FPU of cellulase per gram of glucan, a hydrolyzate containing 32.5 g/L glucose and 18 g/L xylose was formed. Both the xylose and the glucose in this undiluted hydrolyzate were shown to be fermented by recombinant yeast 424A(LNH-ST) to ethanol at 88% of theoretical yield.  相似文献   

14.
Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid   总被引:1,自引:0,他引:1  
Kim JW  Kim KS  Lee JS  Park SM  Cho HY  Park JC  Kim JS 《Bioresource technology》2011,102(19):8992-8999
Liberation of fermentable sugars from recalcitrant lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Here we developed a two-stage pretreatment process using aqueous ammonia and dilute sulfuric acid in a percolation mode to improve production of fermentable sugars from rice straw. Aqueous NH? was used in the first stage which removed lignin selectively but left most of cellulose (97%) and hemicellulose (77%). Dilute acid was applied in the second stage which removed most of hemicellulose, partially disrupted the crystalline structure of cellulose, and thus enhanced enzymatic digestibility of cellulose in the solids remaining. Under the optimal pretreatment conditions, the enzymatic hydrolysis yields of the two-stage treated samples were 96.9% and 90.8% with enzyme loadings of 60 and 15FPU/g of glucan, respectively. The overall sugar conversions of cellulose and hemicellulose into glucose and xylose by enzymatic and acid hydrolysis reached 89.0% and 71.7%, respectively.  相似文献   

15.
A pilot plant (IBUS) consisting of three reactors was used for hydrothermal treatment of wheat straw (120-150 kg/h) aiming at co-production of bioethanol (from sugars) and electricity (from lignin). The first reactor step was pre-soaking at 80 degrees C, the second extraction of hemicellulose at 170-180 degrees C and the third improvement of the enzymatic cellulose convertibility at 195 degrees C. Water added to the third reactor passed countercurrent to straw. The highest water addition (600 kg/h) gave the highest hemicellulose recovery (83%). With no water addition xylose degradation occurred resulting in low hemicellulose recovery (33%) but also in high glucose yield in the enzymatic hydrolysis (72 g/100g glucose in straw). Under these conditions most of the lignin was retained in the fibre fraction, which resulted in a lignin rich residue with high combustion energy (up to 31 MJ/kg) after enzymatic hydrolysis of cellulose and hemicellulose.  相似文献   

16.
An unpolluted process of wheat straw fractionation by steam explosion coupled with ethanol extraction was studied. The wheat straw was steam exploded for 4.5 min with moisture of 34.01%, a pressure of 1.5 MPa without acid or alkali. Hemicellulose sugars were recovered by water countercurrent extraction and decolored with chelating ion exchange resin D412. The gas chromatography (GC) and high-performance liquid chromatography (HPLC) analysis results indicated that there were organic acids in the hemicellulose sugars and the ratio of monosaccharides to oligosaccharides was 1:9 and the main component, xylose, was 85.9% in content. The total recovery rate of hemicellulose was 80%. Water washed materials were subsequently extracted with ethanol. The optimum extraction conditions in this work were 40% ethanol, fiber/liquor ratio 1:50 (w/v), severity log(R)=3.657 (180 degrees C for 20 min), 0.1% NaOH. The lignin yield was 75% by acid precipitation and 85% ethanol solvent was recovered. The lignin was purified using Bj?rkman method. Infrared spectrometry (IR) results indicated that the lignin belonged to GSH (guaiacyl (G) syringyl (S) and p-hydroxyphenyl (H)) lignin and its purity rate reached 85.3%. The cellulose recovery rate was 94% and the results of electron spectroscopy for chemical analysis (ESCA) and infrared spectrometry (IR) showed that hemicellulose and lignin content decreased after steam explosion and ethanol extraction.  相似文献   

17.
Steam explosion of Eucalyptus grandis has been carried out under various pretreatment conditions (200-210 degrees C, 2-5 min) after impregnation of the wood chips with 0.087 and 0.175% (w/w) H2SO4. This study, arranged as a 2(3) factorial design, indicated that pretreatment temperature is the most critical variable affecting the yield of steam-treated fractions. Pretreatment of 0.175% (w/w) H2SO4-impregnated chips at 210 degrees C for 2 min was the best condition for hemicellulose recovery (mostly as xylose) in the water soluble fraction, reaching almost 70% of the corresponding xylose theoretical yield. By contrast, lower pretreatment temperatures of 200 degrees C were enough to yield steam-treated substrates from which a 90% cellulose conversion was obtained in 48 h, using low enzyme loadings of a Celluclast 1.5 1 plus Novozym 188 mixture (Novo Nordisk). Release of water-soluble chromophores was monitored by UV spectroscopy and their concentration increased with pretreatment severity. The yield of alkali-soluble lignin increased at higher levels of acid impregnation and pretreatment temperatures. Thermoanalysis of these lignin fractions indicated a pattern of lignin fragmentation towards greater pretreatment severities but lignin condensation prevailed at the most drastic pretreatment conditions.  相似文献   

18.
The dissolution of biomass into ionic liquids (ILs) has been shown to be a promising alternative biomass pretreatment technology, facilitating faster breakdown of cellulose through the disruption of lignin and the decrystallization of cellulose. Both biological and chemical catalysis have been employed to enhance the conversion of IL-treated biomass polysaccharides into monomeric sugars. However, biomass-dissolving ILs, sugar monomers, and smaller carbohydrate oligomers are all soluble in water. This reduces the overall sugar content in the recovered solid biomass and complicates the recovery and recycle of the IL. Near-complete recovery of the IL and the holocellulose is essential for an IL-based pretreatment technology to be economically feasible. To address this, a solvent extraction technique, based on the chemical affinity of boronates such as phenylboronic acid and naphthalene-2-boronic acid for sugars, was applied to the extraction of glucose, xylose, and cellobiose from aqueous mixtures of 1-ethyl-3-methylimidazolium acetate. It was shown that boronate complexes could extract up to 90% of mono- and disaccharides from aqueous IL solutions, 100% IL systems, and hydrolysates of corn stover containing IL. The use of boronate complexes shows significant potential as a way to recover sugars at several stages in ionic liquid biomass pretreatment processes, delivering a concentrated solution of fermentable sugars, minimizing toxic byproducts, and facilitating ionic liquid cleanup and recycle.  相似文献   

19.
Stream pretreatment of wheat straw solubilized most of the xylan present. Xylose and other sugars were recovered by washing the substrate with water but only a minor part (34%) was monomeric. Treatment of this solutions with celulases and hemicellulases improved the yield of monomeric sugars to 69%, the main product being xylose. Some xylose was also obtained during enzymatic hydrolysis of the solid substrate although the pretreatment step contributed 64% (mean value) of total xylose formed. A reference model, No. 1, and two other models, Nos. 2 and 4, described in the first part of this article series (this issue) have been studied experimentally and results confirm the theoretical conclusions. An uninterrupted hydrolysis over a given time period leads to a lower degree of saccharification than when hydrolysate is withdrawn several times. Saccharification is also favored if the residue is removed at a late stage, i.e., at the end of the 24 h hydrolysis cycle. Extended recirculation of the enzymes during a 4 x 24-h experimental period gave the following average yields of saccharification on a 24-h basis: 65% (Reference), 73% (Model 2), and 79% (Model 4). It is concluded that enzyme recovery with model 4 is 70% or more, while the Reference and Model 2 attain a lower level of recovery. The design of an improved hydrolysis model is also discussed.  相似文献   

20.
Sweet sorghum has been considered as a viable energy crop for alcohol fuel production. This review discloses a novel approach for the biorefining of sweet sorghum stem to produce multiple valuable products, such as ethanol, butanol and wood plastic composites. Sweet sorghum stem has a high concentration of soluble sugars in its juice, which can be fermented to produce ethanol by Saccharomyces cerevisiae. In order to obtain high ethanol yield and fermentation rates, concentrated juice with an initial total sugar concentration of 300gL(-1) was fermented. The maximum ethanol concentration after 54h reached 140gL(-1) with a yield of 0.49g ethanol per g consumed sugar, which is 97% of the theoretical value. Sweet sorghum bagasse, obtained from juice squeezing, was pretreated by acetic acid to hydrolyze 80-90% of the contained hemicelluloses. Using this hydrolysate as raw material (total sugar 55gL(-1)), 19.21gL(-1) total solvent (butanol 9.34g, ethanol 2.5g, and acetone 7.36g) was produced by Clostridium acetobutylicum. The residual bagasse after pretreatment was extruded with PLA in a twin-screw extruder to produce a final product having a PLA: fiber ratio of 2:1, a tensile strength of 49.5M and a flexible strength of 65MPa. This product has potential use for applications where truly biodegradable materials are required. This strategy for sustainability is crucial for the industrialization of biofuels from sweet sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号