首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural killer (NK) cells play a crucial role in host defense against pathogens and immune surveillance against cancer. Given that estrogens have been reported to suppress NK cell activity, we sought to elucidate the mechanisms by which estrogen mediates this effect. We demonstrate by immunocytochemical staining with estrogen receptor-alpha (ERalpha)- and estrogen receptor-beta (ERbeta)-specific antibodies that both ERalpha and ERbeta are expressed in murine NK cells. We also compared the ability of high doses of 17beta-estradiol ( approximately 800 pg/ml) to regulate NK cell activity in wild-type and estrogen receptor-alpha-deficient (ERalphaKO) mice. 17beta-estradiol elicited a significant decrease in NK cell activity in both wild-type and ERalphaKO mice (P < 0.001). These data suggest that ERbeta or possibly a novel receptor is involved in mediating estrogen action on NK cell activity and raise the potential for therapeutic modulation of NK cell activity with selective estrogen receptor modulators (SERMS).  相似文献   

2.
It is well documented that estrogen can activate rapid signaling pathways in a variety of cell types. These non-classical effects of estrogen have been reported to be important for cell survival after exposure to a variety of neurotoxic insults. Since direct evidence of the ability of the estrogen receptors (ERs) alpha and/or beta to mediate such responses is lacking, the hippocampal-derived cell line HT22 was stably transfected with either ERalpha (HTERalpha) or ERbeta (HTERbeta). In HTERalpha and HTERbeta cells, but not untransfected cells, an increase in ERK2 phosphorylation was measured within 15 min of 17beta-estradiol treatment. The ER antagonist ICI 182, 780 (1 microm) and the MEK inhibitor, PD98059 (50 microm) blocked this increase in ERK2 phosphorylation. Treatment of HT22, HTERalpha and HTERbeta cells with the beta-amyloid peptide (25-35) (10 micro m) resulted in a significant decrease in cell viability. Pre-treatment for 15 min with 10 nm 17beta-estradiol resulted in a 50% increase in the number of living cells in HTERalpha and HTERbeta cells, but not in HT22 cells. Finally, ICI 182, 780 and PD98059 prevented 17beta-estradiol-mediated protection. This study demonstrates that both ERalpha and ERbeta can couple to rapid signaling events that mediate estrogen-elicited neuroprotection.  相似文献   

3.
4.
5.
The existence of estrogen receptors (ERs) in oligodendrocytes (OLGs) in vivo and in vitro is unresolved, as their presence has been reported in some studies and their absence in others. Using molecular and immunocytochemical techniques, we describe the subcellular localization of ERalpha and ERbeta in OLGs in vivo and in vitro. Both ERalpha and ERbeta are detected in an immortalized OLG cell line and in enriched OLG cultures by RT-PCR and western blot. Immunocytochemistry of OLGs from enriched cultures shows ERalpha receptors are nuclear, whereas ERbeta receptors are cytoplasmic. Confocal and deconvolution microscopy of enriched OLG cultures reveals ERbeta immunoreactivity is concentrated in perikarya and veins of OLG membrane sheets; lesser reactivity is present in their plasma membranes and nuclei. In vivo, we readily detect ERalpha in neurons but not in OLGs, even though we used different fixation procedures and different ERalpha antibodies. The presence of ERalpha in cultured OLGs may be due to culture media that contains factors stimulating ERalpha expression but are reduced in normal brain. In vivo, ERbeta immunoreactivity is readily detectable in OLG cytoplasm and in myelin sheaths. Incubation of glial cultures without or with increasing concentrations of 17beta-estradiol (E2) shows that E2 significantly accelerates OLG process formation.  相似文献   

6.
7.
8.
The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.  相似文献   

9.
10.
Primitive neuroectodermal tumors (PNETs) are the most common form of pediatric brain tumor. Most often these malignant childhood brain tumors arise from neuroepithelial precursor cells in the cerebellum, and less frequently in the cerebral cortex. Because the normal PNET precursor cells from the cerebrum and cerebellum transiently express high levels of estrogen receptors (ERs), we hypothesized that the PNET cells of the cerebrocortical-derived cell line PFSK1 may also express ERs and would be responsive to estrogen. Results of immunoblot studies using ER-specific antiserum indicate that both ERalpha and ERbeta are expressed in PFSK1 cells. The ability of estrogen to rapidly activate MAPK signaling was tested; low physiological concentrations of E(2) stimulated ERK1/2 phosphorylation and nuclear translocation within 15min of exposure. Exogenously added 17beta-estradiol (E(2)) could not stimulate PFSK1 growth, however E(2) significantly increased PFSK1 cell migration, suggesting that rapid actions of E(2) and ER-mediated processes might contribute to the metastatic phenotype of some PNETs.  相似文献   

11.
Estrogen-related receptor alpha (ERRalpha), a member of the nuclear receptor superfamily, is closely related to the estrogen receptors (ERalpha and ERbeta). The ERRalpha gene is estrogen-responsive in several mouse tissues and cell lines, and a multiple hormone-response element (MHRE) in the promoter is an important regulatory region for estrogen-induced ERRalpha gene expression. ERRalpha was recently shown to be a negative prognostic factor for breast cancer survival, with its expression being highest in cancer cells lacking functional ERalpha. The contribution of ERRalpha in breast cancer progression remains unknown but may have important clinical implications. In this study, we investigated ERRalpha gene expression and chromatin structural changes under the influence of 17beta-estradiol in both ER-positive MCF-7 and ER-negative SKBR3 breast cancer cells. We mapped the nucleosome positions of the ERRalpha promoter around the MHRE region and found that the MHRE resides within a single nucleosome. Local chromatin structure of the MHRE exhibited increased restriction enzyme hypersensitivity and enhanced histone H3 and H4 acetylation upon estrogen treatment. Interestingly, estrogen-induced chromatin structural changes could be repressed by estrogen antagonist ICI 182 780 in MCF-7 cells yet were enhanced in SKBR3 cells. We demonstrated, using chromatin immunoprecipitation assays, that 17beta-estradiol induces ERRalpha gene expression in MCF-7 cells through active recruitment of co-activators and release of co-repressors when ERRalpha and AP1 bind and ERalpha is tethered to the MHRE. We also found that this estrogen effect requires the MAPK signaling pathway in both cell lines.  相似文献   

12.
In the present study, we compared the estrogenic activity of zearalenone (ZEN) and zeranol (ZOL) by determining their relative receptor binding affinities for human ERalpha and ERbeta and also by determining their uterotropic activity in ovariectomized female mice. ZOL displayed a much higher binding affinity for human ERalpha and ERbeta than ZEN did. The IC(50) values of ZEN and ZOL for binding to human ERalpha were 240.4 and 21.79nM, respectively, and the IC(50) values for binding to ERbeta were 165.7 and 42.76nM, respectively. In ovariectomized female ICR mice, s.c. administration of ZEN at doses >or=2mg/kg/day for 3 consecutive days significantly increased uterine wet weight compared with the control group, and administration of ZOL increased the uterine wet weight at lower doses (>or=0.5mg/kg/day for 3 days). Based on available X-ray crystal structures of human ERalpha and ERbeta, we have also conducted molecular modeling studies to probe the binding characteristics of ZEN and ZOL for human ERalpha and ERbeta. Our data revealed that ZEN and ZOL were able to occupy the active site of the human ERalpha and ERbeta in a strikingly similar manner as 17beta-estradiol, such that the phenolic rings of ZEN and ZOL occupied the same receptor region as occupied by the A-ring of 17beta-estradiol. The primary reason that ZOL and ZEN is less potent than 17beta-estradiol is likely because 17beta-estradiol could bind to the receptor pocket without significantly changing its conformation, while ZOL or ZEN would require considerable conformational alterations upon binding to the estrogen receptors (ERs).  相似文献   

13.
17beta-estradiol exerts an antiapoptotic action in skeletal muscle cells through extranuclear ERalpha and beta. This protective action, mainly involves a non-genomic mechanism of ERK1/2 and PI3K/Akt activation and BAD phosphorylation. ERbeta plays a major role in the inhibition of apoptosis by 17beta-estradiol at the level of mitochondria, whereas ERalpha and ERbeta mediate the activation of Akt to the same extent, suggesting differential involvement of ER isoforms depending on the step of the apoptotic/survival pathway involved. The myopathies associated to estrogen deficit states may be related to the mechanisms by which estrogen regulates apoptosis.  相似文献   

14.
We previously reported stable transfection of estrogen receptor alpha (ERalpha) into the ER-negative MDA-MB-231 cells (S30) as a tool to examine the mechanism of action of estrogen and antiestrogens [J. Natl. Cancer Inst. 84 (1992) 580]. To examine the mechanism of ERbeta action directly, we have similarly created ERbeta stable transfectants in MDA-MB-231 cells. MDA-MB-231 cells were stably transfected with ERbeta cDNA and clones were screened by estrogen response element (ERE)-luciferase assay and ERbeta mRNA expression was quantified by real-time RT-PCR. Three stable MDA-MB-231/ERbeta clones were compared with S30 cells with respect to their growth properties, ability to activate ERE- and activating protein-1 (AP-1) luciferase reporter constructs, and the ability to activate the endogenous ER-regulated transforming growth factor alpha (TGFalpha) gene. ERbeta6 and ERbeta27 clones express 300-400-fold and the ERbeta41 clone express 1600-fold higher ERbeta mRNA levels compared with untransfected MDA-MB-231 cells. Unlike S30 cells, 17beta-estradiol (E2) does not inhibit ERbeta41 cell growth. ERE-luciferase activity is induced six-fold by E2 whereas neither 4-hydroxytamoxifen (4-OHT) nor ICI 182, 780 activated an AP-1-luciferase reporter. TGFalpha mRNA is induced in response to E2, but not in response to 4-OHT. MDA-MB-231/ERbeta clones exhibit distinct characteristics from S30 cells including growth properties and the ability to induce TGFalpha gene expression. Furthermore, ERbeta, at least in the context of the MDA-MB-231 cellular milieu, does not enhance AP-1 activity in the presence of antiestrogens. In summary, the availability of both ERalpha and ERbeta stable breast cancer cell lines now allows us to compare and contrast the long-term consequences of individual signal transduction pathways.  相似文献   

15.
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses the reduction of the weakly active estrone (E1) into the most potent estrogen, 17beta-estradiol (E2). E2 stimulates the growth of hormone-dependent diseases via activation of the estrogen receptors (ERs). 17beta-HSD1 is often over-expressed in breast cancer cells. Thus, it is an attractive target for the treatment of mammary tumours. The combination of a ligand- and a structure-based drug design approach led to the identification of bis(hydroxyphenyl) azoles as potential inhibitors of 17beta-HSD1. Different azoles and hydroxy substitution patterns were investigated. The compounds were evaluated for activity and selectivity with regard to 17beta-HSD2, ERalpha and ERbeta. The most potent compound is 3-[5-(4-hydroxyphenyl)-1,3-oxazol-2-yl]phenol (18, IC(50)=0.31 microM), showing very good selectivity, high cell permeability and medium CaCo-2 permeability.  相似文献   

16.
Although it is known that, in the uterus, estrogen receptor alpha (ERalpha) is involved in proliferation and progesterone receptor in differentiation, the role of the two other gonadal-hormone receptors expressed in the uterus, androgen receptor (AR) and estrogen receptor beta (ERbeta), remains undefined. In this study, the involvement of AR in 17beta-estradiol (E(2))-induced cellular proliferation in the immature rat uterus was investigated. AR levels were low in the untreated immature uterus, but 24 h after treatment of rats with E(2), there was an increase in the levels of AR and of two androgen-regulated genes, IGF-I and Crisp (cysteine-rich secretory protein). As expected, E(2) induced proliferation of luminal epithelial cells. These actions of E(2) were all blocked by both the antiestrogen tamoxifen and the antiandrogen flutamide. The E(2)-induced AR was found by immunohistochemistry to be localized exclusively in the stroma, mainly in the myometrium, where it colocalized with ERalpha but not with ERbeta. ERbeta, detected with two different ERbeta-specific antibodies, was expressed in both stromal and epithelial cells either alone or together with ERalpha. Treatment with E(2) caused down-regulation of ERalpha and ERbeta in the epithelium. The data suggest that, in E(2)-induced epithelial cell proliferation, ERalpha induces stromal AR and AR amplifies the ERalpha signal by induction of IGF-I. Because AR is never expressed in cells with ERbeta, it is unlikely that ERbeta signaling is involved in this pathway. These results indicate an important role for AR in proliferation of the uterus, where estrogen and androgen do not represent separate pathways but are sequential steps in one pathway.  相似文献   

17.
18.
The role of estrogens and estrogen-like molecules, including isoflavones, in regulating bone cell activities is essential in understanding the etiology and treatment of post-menopausal osteoporosis. Although estrogen replacement (HRT) has been the main therapy used to prevent and treat osteoporosis, there are concerns about its safety. Isoflavones have attracted attention to their potential roles in osteoporosis prevention and treatment. We have compared the effects of the isoflavone daidzein (1 nM), which has no effect on tyrosine kinases, and 17beta-estradiol (1 nM) on the development and function of cultured osteoblasts isolated from long bones of young female piglets. Daidzein increased ALP activity, osteocalcin secretion, and mineralization, while E2 increased only ALP activity. The content of ERbeta and osteoprotegerin secretion by control cells gradually increased during osteoblast differentiation, whereas the ERalpha and RANK-L content decreased. Daidzein enhanced only the nuclear ERbeta whereas estradiol increased both ERalpha and ERbeta. Daidzein and estradiol increased osteoprotegerin and RANK-L secretion. Daidzein had a more pronounced effect than did estradiol. Daidzein and estradiol increased the membrane content of RANK-L and the nuclear content of runx2/Cbfa1. Daidzein enhanced the nuclear content of progesterone and vitamin D receptors but not as much as did estradiol. All the effects of daidzein were blocked by ICI 182,780. We conclude that a low concentration of daidzein may exert its anti-resorptive action by increasing the activity of porcine mature osteoblasts via ERbeta, by regulating runx2/Cbfa1 production, and by stimulating the secretion of key proteins involved in osteoclastogenesis, such as osteoprotegerin and RANK-ligand.  相似文献   

19.
20.
Both estrogen receptors (ER) alpha (ERalpha) and beta (ERbeta) are localized in the nucleus, plasma membrane, and mitochondria, where they mediate the different physiological effects of estrogens. It has been observed that the relative subcellular localization of ERs is altered in several cancer cells. We have demonstrated that MCF-10F cells, the immortal and non-tumorigenic human breast epithelial cells (HBEC) that are ERalpha-negative and ERbeta-positive, are transformed in vitro by 17beta-estradiol (E(2)), generating highly invasive cells that are tumorigenic in severe combined immunodeficient mice. E(2)-transformed MCF-10F (trMCF) cells exhibit progressive loss of ductulogenesis, invasive (bsMCF) and tumorigenic (caMCF) phenotypes. Immunolocalization of ERbeta by confocal fluorescent microscopy and electron microscopy revealed that ERbeta is predominantly localized in mitochondria of MCF-10F and trMCF cells. Silencing ERbeta expression with ERbeta-specific small interference RNA (siRNA-ERbeta) markedly diminishes both nuclear and mitochondrial ERbeta in MCF-10F cells. The ERbeta shifts from its predominant localization in the mitochondria of MCF-10F and trMCF cells to the nucleus of bsMCF cells, becoming predominantly nuclear in caMCF cells. Furthermore, we demonstrated that the mitochondrial ERbeta in MCF-10F cells is involved in E(2)-induced expression of mitochondrial DNA (mtDNA)-encoded respiratory chain (MRC) proteins. This is the first report of an association of changes in the subcellular localization of ERbeta with various stages of E(2)-induced transformation of HBEC and a functional role of mitochondrial ERbeta in mediating E(2)-induced MRC protein synthesis. Our findings provide a new insight into one of the potential roles of ERbeta in human breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号