首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AIMS: To use molecular beacon based nucleic acid sequence-based amplification (NASBA) to develop a rapid, sensitive, specific detection method for norovirus (NV) genogroupII (GII). METHODS AND RESULTS: A method to detect NV GII from environmental samples using real-time NASBA was developed. This method was routinely sensitive to 100 copies of target RNA and intermittent amplification occurred with as few as 10 copies. Quantitative estimates of viral load were possible over at least four orders of magnitude. CONCLUSIONS: The NASBA method described here is a reliable and sensitive assay for the detection of NV. This method has the potential to be linked to a handheld NASBA device that would make this real-time assay a portable and inexpensive alternative to bench-top, lab-based assays. SIGNIFICANCE AND IMPACT OF THE STUDY: The development of the real-time NASBA assay described here has resulted in a simple, rapid (<1 h), convenient testing format for NV. To our knowledge, this is the first example of a molecular beacon based NASBA assay for NV.  相似文献   

3.
Quantitative real-time RT-PCR is a very powerful technique for measuring gene expression at the mRNA level. In order to compare mRNA expression in different experimental or clinical conditions, expression of a target gene has to be normalized to an appropriate internal standard, which is generally a housekeeping gene. In our study, we have tested several housekeeping genes in peripheral whole blood of healthy volunteers and patients suffering from inflammatory diseases. A first analysis of 91 samples illustrated that the mRNA expression of peptidylpropyl isomerase B (PPIB) encoding for cyclophilin B protein, is more stable than beta actin and glyceraldehyde-3-phosphate dehydrogenase, which are both commonly selected as internal standard. Among the three genes tested, beta actin displayed the highest inter-sample variation of expression. The constancy of PPIB mRNA expression was further confirmed by 214 additional samples. In conclusion, we showed that PPIB, in contrast to beta actin and glyceraldehyde-3-phosphate dehydrogenase, is a suitable housekeeping gene in human peripheral blood.  相似文献   

4.
We have developed a real-time nucleic acid sequence based amplification (NASBA) procedure for detection of infectious salmon anaemia virus (ISAV). Primers were designed to target a 124 nucleotide region of ISAV genome segment 8. Amplification products were detected in real-time with a molecular beacon (carboxyfluorescin [FAM]-labelled and methyl-red quenched) that recognised an internal region of the target amplicon. Amplification and detection were performed at 41 degrees C for 90 min in a Corbett Research Rotorgene. The real-time NASBA assay was compared to a conventional RT-PCR for ISAV detection. From a panel of 45 clinical samples, both assays detected ISAV in the same 19 samples. Based on the detection of a synthetic RNA target, the real-time NASBA procedure was approximately 100x more sensitive than conventional RT-PCR. These results suggest that real-time NASBA may represent a useful diagnostic procedure for ISAV.  相似文献   

5.
6.
7.
8.
Isothermal nucleic acid sequence-based amplification (NASBA) was applied to detect Legionella 16S rRNA. The assay was originally developed as a Legionella pneumophila conventional NASBA assay with electrochemiluminescence (ECL) detection and was subsequently adapted to a L. pneumophila real-time NASBA format and a Legionella spp. real-time NASBA using molecular beacons. L. pneumophila RNA prepared from a plasmid construct was used to assess the analytical sensitivity of the assay. The sensitivity of the NASBA assay was 10 molecules of in vitro wild type L. pneumophila RNA and 0.1-1 colony-forming units (CFU) of L. pneumophila. In spiked respiratory specimens, the sensitivity of the NASBA assays was 1-10000 CFU of L. pneumophila serotype 1 depending on the background. After dilution of the nucleic acid extract prior to amplification, 1-10 CFU of L. pneumophila serotype 1 could be detected with both detection methods. Finally, 27 respiratory specimens, well characterized by culture and PCR, collected during a L. pneumophila outbreak, were tested by conventional and real-time NASBAs. All 11 PCR positive samples were positive by conventional NASBA, 9/11 and 10/11 were positive by L. pneumophila real-time NASBA and Legionella spp. real-time NASBA, respectively.  相似文献   

9.
10.
11.
12.
A highly sensitive and specific assay method was developed for the detection of viable Escherichia coli as an indicator organism in water, using nucleic acid sequence-based amplification (NASBA) and electrochemiluminescence (ECL) analysis. Viable E. coli were identified via a 200-nt-long target sequence from mRNA (clpB) coding for a heat shock protein. In the detection assay, a heat shock was applied to the cells prior to disruption to induce the synthesis of clpB mRNA and the mRNA was extracted, purified, and finally amplified using NASBA. The amplified mRNA was quantified with an ECL detection system after hybridization with specific DNA probes. Several disruption methods were investigated to maximize total RNA extracted from viable cells. Optimization was also carried out regarding the design of NASBA primer pairs and detection probes, as well as reaction and detection conditions. Finally, the assay was tested regarding sensitivity and specificity. Analysis of samples revealed that as few as 40 E. coli cells/mL can be detected, with no false positive signals resulting from other microorganisms or nonviable E. coli cells. Also, it was shown that a quantification of E. coli cells was possible with our assay method.  相似文献   

13.
Infection of poultry with highly pathogenic avian influenza virus (AIV) can be devastating in terms of flock morbidity and mortality, economic loss, and social disruption. The causative agent is confined to certain isolates of influenza A virus subtypes H5 and H7. Due to the potential of direct transfer of avian influenza to humans, continued research into rapid diagnostic tests for influenza is therefore necessary. A nucleic acid sequence-based amplification (NASBA) method was developed to detect a portion of the haemagglutinin gene of avian influenza A virus subtypes H5 and H7 irrespective of lineage. A further NASBA assay, based on the matrix gene, was able to detect examples of all known subtypes (H1-H15) of avian influenza virus. The entire nucleic acid isolation, amplification, and detection procedure was completed within 6h. The dynamic range of the three AIV assays was five to seven orders of magnitude. The assays were sensitive and highly specific, with no cross-reactivity to phylogenetically or clinically relevant viruses. The results of the three AIV NASBA assays correlated with those obtained by viral culture in embryonated fowl's eggs.  相似文献   

14.
Evidence demonstrating that human rhinovirus (HRV) disease is not exclusively limited to the upper airways and may cause lower respiratory complications, together with the frequency of HRV infections and the increasing number of immunocompromised patients underline the need for rapid and accurate diagnosis of HRV infections. In this study, we developed the first quantitative real-time nucleic acid sequence-based amplification assay with an internal control using molecular beacon probes for selective and sensitive detection of human rhinovirus serotypes. We described a simple method to accurately quantify RNA target by computing the time to positivity (TTP) values for HRV RNA. Quantification capacity was assessed by plotting these TTP values against the starting number of target molecules. By using this simple method, we have significantly increased the diagnostic accuracy, precision, and trueness of real-time NASBA assay. Specificity of the method was verified in both in silico and experimental studies. Moreover, for assessment of clinical reactivity of the assay, NASBA has been validated on bronchoalveolar lavage (BAL) specimens. Our quantitative NASBA assay was found to be very specific, accurate, and precise with high repeatability and reproducibility.  相似文献   

15.
16.
17.
18.
Requiring only simple heating devices, isothermal nucleic acid-based amplification (NASBA) is a potential detection platform to be developed for on-site diagnosis of aquaculture pathogens. In this report, an NASBA assay has been developed for the Taura syndrome virus (TSV), one of the most devastating RNA virus pathogens for several penaeid shrimp species. The NASBA amplicons were detected by agarose gel electrophoresis and confirmed by Northern-blotting and dot-blotting analysis, using a biotinylated TSV-specific primer. The sensitivity of the TSV NASBA coupled with dot-blotting detection was approximately 5-fold less sensitive than that of the commercially available RT-nested, PCR-based IQ2000 TSV Detection and Prevention System that was also confirmed to be more sensitive than the RT-PCR-based TSV detection protocol recommended by the OIE (Office International des Epizooties). The specificity of the TSV NASBA reaction was substantiated by the results that RNA of non-target viruses did not generate any signals. Furthermore, a simple colorimetric microtiter plate assay employing TSV-specific capture and detection primers was developed as a simple alternative approach for the detection of NASBA amplicons. Taken together, the combination of the isothermal NASBA and colorimetric solid phase-based assays should allow sensitive, straightforward, and speedy on-site detection of TSV.  相似文献   

19.
A commercially available nucleic acid sequence-based amplification (NASBA) NucliSens Basic Kit (NBK) assay for the detection of Mycoplasma pneumoniae 16S rRNA in respiratory specimens was developed and compared to standard NASBA and PCR assays previously developed in our laboratory. The specificity and sensitivity of the NBK assay was comparable to the specificity and sensitivity of the corresponding standard NASBA assay. The NBK offers standardized reagents for the development of a NASBA assay for the detection of M. pneumoniae in respiratory specimens and is easily adaptable to other amplification targets.  相似文献   

20.
Aims: We found that an adenine base caused fluorescence quenching of a fluorescein (FL)‐labelled probe in DNA:RNA hybrid sequences, and applied this finding to a nucleic acid sequence–based amplification (NASBA) method. Methods and Results: The present NASBA method employed a probe containing an FL‐modified thymine at its 3′ end and ethidium bromide (EtBr) on the basis of a combination of adenine‐induced quenching and fluorescence resonance energy transfer (FRET) between the FL donor and EtBr acceptor. This NASBA was used to detect Shiga toxin (STX) stx‐specific mRNA in STX‐producing Escherichia coli, demonstrating rapid quantification of the target gene with high sensitivity. Conclusion: Although the inherent quenching effect of adenine was inferior to that of guanine, FRET between the FL and EtBr moieties enhanced the adenine‐induced quenching, allowing rapid and sensitive real‐time NASBA detection. Significance and Impact of the Study: This study gives a novel real‐time diagnostic system based on NASBA for a sensitive mRNA (or viral RNA) detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号