首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rac1 has been implicated in the generation of reactive oxygen species (ROS) in several cell types, but the enzymatic origin of the ROS has not been proven. The present studies demonstrate that Nox1, a homolog of the phagocyte NADPH-oxidase component gp91(phox), is activated by Rac1. When Nox1 is co-expressed along with its regulatory subunits NOXO1 and NOXA1, significant ROS generation is seen. Herein, co-expression of constitutively active Rac1(G12V), but not wild-type Rac1, resulted in marked further stimulation of activity. Decreased Rac1 expression using small interfering RNA reduced Nox1-dependent ROS. CDC42(G12V) failed to increase activity, and small interfering RNA directed against CDC42 failed to decrease activity, pointing to specificity for Rac. TPR domain mutants of NOXA1 that interfere with Rac1 binding were ineffective in supporting Nox1-dependent ROS generation. Immunoprecipitation experiments demonstrated a complex containing Rac1(G12V), NOXO1, NOXA1, and Nox1. CDC42(G12V) could not substitute for Rac1(G12V) in such a complex. Nox1 formed a complex with Rac1(G12V) that was independent of NOXA1 and NOXO1, consistent with direct binding of Rac1(G12V) to Nox1. Rac1(G12V) interaction with NOXA1 was enhanced by Nox1 and NOXO1, suggesting cooperative binding. A model is presented comparing activation by regulatory subunits of Nox1 versus gp91(phox) (Nox2) in which Rac1 activation provides a major trigger that acutely activates Nox1-dependent ROS generation.  相似文献   

2.
In the plasma membrane fraction from Caco-2 human colon carcinoma cells, active Nox1 (NADPH oxidase 1) endogenously co-localizes with its regulatory components p22(phox), NOXO1, NOXA1 and Rac1. NADPH-specific superoxide generating activity was reduced by 80% in the presence of either a flavoenzyme inhibitor DPI (diphenyleneiodonium) or NADP(+). The plasma membranes from PMA-stimulated cells showed an increased amount of Rac1 (19.6 pmol/mg), as compared with the membranes from unstimulated Caco-2 cells (15.1 pmol/mg), but other components did not change before and after the stimulation by PMA. Spectrophotometric analysis found approx. 36 pmol of FAD and 43 pmol of haem per mg of membrane and the turnover of superoxide generation in a cell-free system consisting of the membrane and FAD was 10 mol/s per mol of haem. When the constitutively active form of Rac, Rac1(Q61L) or GTP-bound Rac1 was added exogenously to the membrane, O(2)(-)-producing activity was enhanced up to 1.5-fold above the basal level, but GDP-loaded Rac1 did not affect superoxide-generating kinetics. A fusion protein [NOXA1N-Rac1(Q61L)] between truncated NOXA1(1-211) and Rac1-(Q61L) exhibited a 6-fold increase of the basal Nox1 activity, but NOXO1N(1-292) [C-terminal truncated NOXO1(1-292)] alone showed little effect on the activity. The activated forms of Rac1 and NOXA1 are essentially involved in Nox1 activation and their interactions might be responsible for regulating the O(2)(-)-producing activity in Caco-2 cells.  相似文献   

3.
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.  相似文献   

4.
The integral membrane protein p22phox is an indispensable component of the superoxide-generating phagocyte NADPH oxidase, whose catalytic core is the membrane-associated gp91phox (also known as Nox2). p22phox associates with gp91phox and, through its proline-rich C terminus, provides a binding site for the tandem Src homology 3 domains of the activating subunit p47phox. Whereas p22phox is expressed ubiquitously, its participation in regulating the activity of other Nox enzymes is less clear. This study investigates the requirement of p22phox for Nox enzyme activity and explores the role of its proline-rich region (PRR) for regulating activity. Coexpression of specific Nox catalytic subunits (Nox1, Nox2, Nox3, Nox4, or Nox5) along with their corresponding regulatory subunits (NOXO1/NOXA1 for Nox1; p47phox/p67phox/Rac for Nox2; NOXO1 for Nox3; no subunits for Nox4 or Nox5) resulted in marked production of reactive oxygen. Small interfering RNAs decreased endogenous p22phox expression and inhibited reactive oxygen generation from Nox1, Nox2, Nox3, and Nox4 but not Nox5. Truncated forms of p22phox that disrupted the PRR-inhibited reactive oxygen generation from Nox1, Nox2, and Nox3 but not from Nox4 and Nox5. Similarly, p22phox (P156Q), a mutation that disrupts Src homology 3 binding by the PRR, potently inhibited reactive oxygen production from Nox1 and Nox2 but not from Nox4 and Nox5. Expression of p22phox (P156Q) inhibited NOXO1-stimulated Nox3 activity, but co-expression of NOXA1 overcame the inhibitory effect. The P157Q and P160Q mutations of p22phox showed selective inhibition of Nox2/p47phox/p67phox, and selectivity was specific for the organizing subunit (p47phox or NOXO1) rather than the Nox catalytic subunit. These studies stress the importance of p22phox for the function of Nox1, Nox2, Nox3, and Nox4, and emphasize the key role of the PRR for regulating Nox proteins whose activity is dependent upon p47phox or NOXO1.  相似文献   

5.
gp91(phox) (Nox2), the catalytic subunit of the superoxide-generating respiratory burst oxidase, is regulated by subunits p47(phox) and p67(phox). Nox1, a homolog of gp91(phox), is regulated by NOXO1 and NOXA1, homologs of p47(phox) and p67(phox), respectively. For both Nox1 and gp91(phox), an organizer protein (NOXO1 or p47(phox)) cooperates with an activator protein (NOXA1 or p67(phox)) to regulate the catalytic subunit. Herein, we investigate the subunit regulation of Nox3 compared with that of other Nox enzymes. Nox3, like gp91(phox), was activated by p47(phox) plus p67(phox). Whereas gp91(phox) activity required the protein kinase C activator phorbol myristate acetate (PMA), Nox3 activity was already high without PMA, but was further stimulated approximately 30% by PMA. gp91(phox) was also activated by NOXO1/NOXA1 and required PMA for high activity. gp91(phox) regulation required an intact activation domain in the activator protein, as neither p67(phox)(V204A) nor NOXA1(V205A) were effective. In contrast, p67(phox)(V204A) was effective (along with p47(phox)) in activating Nox3. Unexpectedly, Nox3 was strongly activated by NOXO1 in the absence of NOXA1 or p67(phox). Nox3 activity was regulated by PMA only when p47(phox) but not NOXO1 was present, consistent with the phosphorylation-regulated autoinhibitory region in p47(phox) but not in NOXO1. Deletion of the autoinhibitory region from p47(phox) rendered this subunit highly active in the absence of PMA toward both gp91(phox) and Nox3, and high activity required an activator subunit. The unique regulation of Nox3 supports a model in which multiple interactions with regulatory subunits stabilize an active conformation of the catalytic subunit.  相似文献   

6.
Role of the small GTPase Rac in p22phox-dependent NADPH oxidases   总被引:2,自引:0,他引:2  
Miyano K  Sumimoto H 《Biochimie》2007,89(9):1133-1144
The superoxide-producing phagocyte NADPH oxidase gp91(phox)/Nox2 and the non-phagocytic oxidases Nox1 and Nox3 each form a complex in the membrane with p22(phox), which provides both stabilization and a docking site for organizer proteins. The p22(phox)-complexed Nox2 and Nox1 are dormant on their own, and their activation requires soluble supportive proteins such as a Nox organizer (p47(phox) or Noxo1) and a Nox activator (p67(phox) or Noxa1). The small GTPase Rac directly binds to the activators, and thus plays an essential role in the Nox2-based oxidase containing p47(phox) and p67(phox) or a positive role in Nox1 activity supported by Noxo1 and Noxa1. Although Nox3 complexed with p22(phox) constitutively produce superoxide, the production can be enhanced by supportive proteins. Here we compare the roles of Rac in these p22(phox)-dependent oxidases using the organizer and activator in different combinations. Expression of constitutively active Rac1(Q61L) is essential for activation of the Nox2- or Nox1-based oxidase containing the organizer p47(phox) and either p67(phox) or Noxa1. When these oxidases use Noxo1 as an organizer instead of p47(phox), they produce a small but significant amount of superoxide without expression of Rac1(Q61L), although the production is enhanced by Rac1(Q61L). Thus p47(phox) is likely related to strict dependence on Rac. The Nox3-based oxidase has a similar tendency in the change of the dependence: Rac plays a positive role in Nox3 activation in the presence of p47(phox) and either p67(phox) or Noxa1, whereas Rac fails to upregulate Nox3 activity when p47(phox) is replaced with Noxo1. We also demonstrate that, in the Nox3-based oxidase containing solely p67(phox) as supportive protein, expression of Rac1(Q61L) enhances not only superoxide production but also membrane translocation of p67(phox). Since the enhancements are not observed with a mutant p67(phox) defective in binding to Rac, this GTPase appear to directly recruit p67(phox) to the membrane.  相似文献   

7.
Human normal and transformed (Caco-2) colon tissues as well as guinea pig gastric mucosal cells express Nox1, which is a homolog of the phagocyte NADPH oxidase subunit, gp91(phox) of membrane-bound cytochrome b(558). It was reported that Nox1-transfection to NIH 3T3 cells could provide O(2)(-)-generating ability, independently of regulatory cytosolic factors (Rac2, p67(phox), and p47(phox)) that are obligatory in the phagocyte oxidase system. Here, we detected and sequenced a p67(phox) homolog in Caco-2 almost identical to the neutrophil sequence, except for three nucleotide substitutions, two of which changed lysines 181 and 328 to arginines. Investigation of its ability to support O(2)(-)-generation in cell-free reconstitution experiments combining with neutrophil cytochrome b(558) showed O(2)(-)-generation, provided that recombinant p47(phox) was added. This result demonstrates that the intrinsic p67(phox) homolog of Caco-2 was able to function as a phagocyte p67(phox) for cytochrome b(558). The requirement of p47(phox) addition suggested that this component was absent in Caco-2 cells. Caco-2 membranes, used as a source of Nox1 in place of cytochrome b(558), did not show significant O(2)(-)-generation, which was mainly explained by their very little Nox1 expression.  相似文献   

8.
NOXO1 (Nox organizing protein 1) and NOXA1 (Nox activating protein 1) are homologs of p47phox and p67phox. p47phox functions in phagocytes as an essential organizing protein mediating the binding of other regulatory proteins during activation of the phagocyte oxidase, and its translocation to the membrane is triggered upon cell activation by hyperphosphorylation, which relieves autoinhibition of SH3 and PX domains. NOXO1 lacks an autoinhibitory region and phosphorylation sites that are present in p47phox. Co-transfection of Nox1, NOXO1, and NOXA1 reconstitutes ROS (reactive oxygen species) generation in HEK293 cells in the absence of cell stimulation. NOXO1 binds to the phosphatidylinositol (PtdIns) lipids PtdIns 3,5-P2, PtdIns 5-P, and PtdIns 4-P. Unlike p47phox, which is located in the cytosol of resting cells and translocates to the plasma membrane where gp91phox is located, NOXO1 co-localizes with Nox1 in the membranes of resting cells. This localization of NOXO1 is dictated by its PX domain, since this domain but not the remainder of the molecule localizes to membranes. A point mutation in the PX domain of holo-NOXO1 decreases lipid binding resulting in cytosolic localization and also inhibits NOXO1-activation of Nox1. Thus, in transfected HEK293 cells, NOXO1 and NOXA1 activate Nox1 without the need for agonist activation, and this is mediated in part by binding of the NOXO1 PX domain to membrane lipids.  相似文献   

9.
The generation of reactive oxygen species (ROS) in cells stimulated with growth factors requires the activation of phosphatidylinositol 3-kinase (PI3K) and the Rac protein. We report here that the COOH-terminal region of Nox1, a protein related to gp91(phox) (Nox2) of phagocytic cells, is constitutively associated with beta Pix, a guanine nucleotide exchange factor for Rac. Both growth factor-induced ROS production and Rac1 activation were completely blocked in cells depleted of beta Pix by RNA interference. Rac1 was also shown to bind to the COOH-terminal region of Nox1 in a growth factor-dependent manner. Moreover, the depletion of Nox1 by RNA interference inhibited growth factor-induced ROS generation. These results suggest that ROS production in growth factor-stimulated cells is mediated by the sequential activation of PI3K, beta Pix, and Rac1, which then binds to Nox1 to stimulate its NADPH oxidase activity.  相似文献   

10.
The NADPH oxidase 1 (Nox1) is a gp91(phox) homologue preferentially expressed in the colon. We have established primary cultures of guinea pig large intestinal epithelial cells giving 90% purity of surface mucous cells. These cells spontaneously released superoxide anion (O(2)(-)) of 160 nmol/mg protein/h and expressed the Nox1, p22(phox), p67(phox), and Rac1 mRNAs, but not the gp91(phox), Nox4, p47(phox), p40(phox), and Rac2 mRNAs. They also expressed novel homologues of p47(phox) and p67(phox) (p41(nox) and p51(nox), respectively). Human colon cancer cell lines (T84 and Caco2 cells) expressed the Nox1, p22(phox), p51(nox), and Rac1 mRNAs, but not the other NADPH component mRNAs, and secreted only small amounts of O(2)(-) (<2 nmol/mg protein/h). Cotransfection of p41(nox) and p51(nox) cDNAs in T84 cells enhanced PMA-stimulated O(2)(-) release 5-fold. Treatment of the transfected T84 cells with recombinant flagellin (rFliC) from Salmonella enteritidis further augmented the O(2)(-) release in association with the induction of Nox1 protein. The enhanced O(2)(-) production by cotransfection of p41(nox) and p51(nox) vectors further augmented the rFliC-stimulated IL-8 release from T84 cells. T84 cells expressed the Toll-like receptor 5, and rFliC rapidly phosphorylated TGF-beta-activated kinase 1 and TGF-beta-activated kinase 1-binding protein 1. A potent inhibitor for NF-kappaB (pyrrolidine dithiocarbamate) significantly blocked the rFliC-primed increase in O(2)(-) production and induction of Nox1 protein. These results suggest that p41(nox) and p51(nox) are involved in the Nox1 activation in surface mucous cells of the colon, and besides that, epithelial cells discern pathogenicities among bacteria to appropriately operate Nox1 for the host defense.  相似文献   

11.
Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22(phox) at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22(phox): the Noxa1-Noxo1 and Noxo1-p22(phox) interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1.  相似文献   

12.
Noxa1 was discovered as an activating factor for Nox1, an O(2)(-)-generating enzyme. Subsequent studies have shown that Noxa1 is colocalized with Nox2 in several cell types, including vascular cells. Nox2 activation by Noxa1 has been examined in reconstituted model cells. However, little is known about the kinetic properties of Noxa1 in Nox2 activation. In the present study, we used purified cyt.b(558) (Nox2 plus p22(phox)), Rac(Q61L), and Noxo1 to examine the ability of Noxa1 to activate Nox2. In the pure reconstitution system, Noxa1 activated Nox2 with lower efficiency than p67(phox), a canonical activator of Nox2. The EC(50) value of Noxa1 was considerably higher than that of p67(phox). The V(max) value with Noxa1 and Noxo1 was one-third of that with p67(phox) and p47(phox). The EC(50) value of Noxo1 or Rac(Q61L) was also higher when Noxa1 was used. The affinity of FAD for the oxidase and the stability of the active complex were remarkably low when Noxa1 and Noxo1 were used compared with p67(phox) and p47(phox). The stability was not improved by fusion of Noxa1 with Rac(Q61L). These findings show that Noxa1 has quite different kinetic properties from p67(phox) and suggest that Noxa1 may function as a moderate activator of Nox2.  相似文献   

13.
14.
The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.  相似文献   

15.
Several Nox family NADPH oxidases function as multicomponent enzyme systems. We explored determinants of assembly of the multicomponent oxidases Nox1 and Nox3 and examined the involvement of Rac1 in their regulation. Both enzymes are supported by p47phox and p67phox or homologous regulators called Noxo1 and Noxa1, although Nox3 is less dependent on these cofactors for activity. Plasma membrane targeting of Noxa1 depends on Noxo1, through tail-to-tail interactions between these proteins. Noxa1 can support Nox1 without Noxo1, when targeted to the plasma membrane by fusing membrane-binding sequences from Rac1 (amino acids 183 to 192) to the C terminus of Noxa1. However, membrane targeting of Noxa1 is not sufficient for activation of Nox1. Both the Noxo1-independent and -dependent Nox1 systems involve Rac1, since they are affected by Rac1 mutants or Noxa1 mutants defective in Rac binding or short interfering RNA-mediated Rac1 silencing. Nox1 or Nox3 expression promotes p22phox transport to the plasma membrane, and both oxidases are inhibited by mutations in the p22phox binding sites (SH3 domains) of the Nox organizers (p47phox or Noxo1). Regulation of Nox3 by Rac1 was also evident from the effects of mutant Rac1 or mutant Nox3 activators (p67phox or Noxa1) or Rac1 silencing. In the absence of Nox organizers, the Nox activators (p67phox or Noxa1) colocalize with Rac1 within ruffling membranes, independently of their ability to bind Rac1. Thus, Rac1 regulates both oxidases through the Nox activators, although it does not appear to direct the subcellular localization of these activators.  相似文献   

16.
Nox3, a member of the superoxide-producing NADPH oxidase (Nox) family, participates in otoconia formation in mouse inner ears, which is required for perception of balance and gravity. The activity of other Nox enzymes such as gp91(phox)/Nox2 and Nox1 is known to absolutely require both an organizer protein (p47(phox) or Noxo1) andanactivatorprotein (p67(phox) or Noxa1); for the p47(phox)-dependent activation of these oxidases, treatment of cells with stimulants such as phorbol 12-myristate 13-acetate is also indispensable. Here we show that ectopic expression of Nox3 in various types of cells leads to phorbol 12-myristate 13-acetate-independent constitutive production of a substantial amount of superoxide under the conditions where gp91(phox) and Nox1 fail to generate superoxide, i.e. in the absence of the oxidase organizers and activators. Nox3 likely forms a functional complex with p22(phox); Nox3 physically interacts with and stabilizes p22(phox), and the Nox3-dependent superoxide production is totally dependent on p22(phox). The organizers p47(phox) and Noxo1 are capable of enhancing the superoxide production by Nox3 in the absence of the activators, and the enhancement requires the interaction of the organizers with p22(phox), further indicating a link between Nox3 and p22(phox). The p47(phox)-enhanced Nox3 activity is further facilitated by p67(phox) or Noxa1, whereas the activators cancel the Noxo1-induced enhancement. On the other hand, the small GTPase Rac, essential for the gp91(phox) activity, is likely dispensable to the Nox3 system. Thus Nox3 functions together with p22(phox) as an enzyme constitutively producing superoxide, which can be distinctly regulated by combinatorial use of the organizers and activators.  相似文献   

17.
The NADPH oxidases (Noxs) are a family of superoxide-generating enzymes implicated in a variety of biological processes. Full activity of Nox1, -2, and -3 requires the action of a Rac GTPase. A direct regulatory interaction of Rac with Nox2 has been proposed as part of a two-step mechanism for regulating electron transfer during superoxide formation. Using truncation analysis of Rac binding to the cytoplasmic tail of Nox2, along with peptides derived from this region in cell-free assays, we identify a Rac interaction site within amino acids 419-430 of Nox2. This region is required for binding Rac2 but not p47(phox) or p67(phox) cytosolic regulatory factors. A cell-permeant version of the peptide encompassing amino acids 419-430 specifically inhibits NADPH oxidase activation in intact human neutrophils. Mutational analysis of the putative Rac-binding site revealed specific residues, particularly Lys-421, Tyr-425, and Lys-426, individually required for Rac-dependent NADPH oxidase activity that are conserved in the Rac-regulated Nox1, Nox2, and Nox3 enzymes but not in Nox4 or Nox5. Mutation of the conserved residues in the Rac-binding site of Nox1 also result in the loss of Rac-dependent activity. Our data identify a functional Rac interaction site conserved in Rac-dependent Noxs and support a direct regulatory interaction of Rac GTPases to promote activation of these NADPH oxidases.  相似文献   

18.
Helicobacter pylori is a Gram-negative microaerophilic bacterium that causes chronic gastritis, peptic ulcer, and gastric carcinoma. Interleukin-1beta (IL-1beta) is one of the potent proinflammatory cytokines elicited by H. pylori infection. We have evaluated the role of H. pylori lipopolysaccharide (LPS) as one of the mediators of IL-1beta release and dissected the signaling pathways leading to LPS-induced IL-1beta secretion. We demonstrate that both the NF-kappaB and the C/EBPbeta-binding elements of the IL-1beta promoter drive LPS-induced IL-1beta gene expression. NF-kappaB activation requires the classical TLR4-initiated signaling cascade leading to IkappaB phosphorylation as well as PI-3K/Rac1/p21-activated kinase (PAK) 1 signaling, whereas C/EBPbeta activation requires PI-3K/Akt/p38 mitogen-activated protein (MAP) kinase signaling. We observed a direct interaction between activated p38 MAP kinase and C/EBPbeta, suggesting that p38 MAPK is the immediate upstream kinase responsible for activating C/EBPbeta. Most important, we observed a role of Rac1/PAK1 signaling in activation of caspase-1, which is necessary for maturation of pro-IL-1beta. H. pylori LPS induced direct interaction between PAK1 and caspase-1, which was inhibited in cells transfected with dominant-negative Rac1. PAK1 immunoprecipitated from lysates of H. pylori LPS-challenged cells was able to phosphorylate recombinant caspase-1, but not its S376A mutant. LPS-induced caspase-1 activation was abrogated in cells transfected with caspase-1(S376A). Taken together, these results suggested a role of PAK1-induced phosphorylation of caspase-1 at Ser376 in activation of caspase-1. To the best of our knowledge our studies show for the first time that LPS-induced Rac1/PAK1 signaling leading to caspase-1 phosphorylation is crucial for caspase-1 activation. These studies also provide detailed insight into the regulation of IL-1beta gene expression by H. pylori LPS and are particularly important in the light of the observations that IL-1beta gene polymorphisms are associated with increased risk of H. pylori-associated gastric cancer.  相似文献   

19.
Sumimoto H 《The FEBS journal》2008,275(13):3249-3277
NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc(1) complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca(2+)-binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin-NADP(+) reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1-4 subfamily in animals form a stable heterodimer with the membrane protein p22(phox), which functions as a docking site for the SH3 domain-containing regulatory proteins p47(phox), p67(phox), and p40(phox); the small GTPase Rac binds to p67(phox) (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67(phox)-like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation.  相似文献   

20.
Platelet-derived growth factor (PDGF) plays a critical role in the pathogenesis of proliferative diseases. NAD(P)H oxidase (Nox)-derived reactive oxygen species (ROS) are essential for signal transduction by growth factor receptors. Here we investigated the dependence of PDGF-AA-induced ROS production on the cytosolic Nox subunits Rac-1 and p47(phox), and we systematically evaluated the signal relay mechanisms by which the alphaPDGF receptor (alphaPDGFR) induces ROS liberation. Stimulation of the alphaPDGFR led to a time-dependent increase of intracellular ROS levels in fibroblasts. Pharmacological inhibitor experiments and enzyme activity assays disclosed Nox as the source of ROS. alphaPDGFR activation is rapidly followed by the translocation of p47(phox) and Rac-1 from the cytosol to the cell membrane. Experiments performed in p47(phox)(-/-) cells and inhibition of Rac-1 or overexpression of dominant-negative Rac revealed that these Nox subunits are required for PDGF-dependent Nox activation and ROS liberation. To evaluate the signaling pathway mediating PDGF-AA-dependent ROS production, we investigated Ph cells expressing mutant alphaPDGFRs that lack specific binding sites for alphaPDGFR-associated signaling molecules (Src, phosphatidylinositol 3-kinase (PI3K), phospholipase Cgamma, and SHP-2). Lack of PI3K signaling (but not Src, phospholipase Cgamma, or SHP-2) completely abolished PDGF-dependent p47(phox) and Rac-1 translocation, increase of Nox activity, and ROS production. Conversely, a mutant alphaPDGFR able to activate only PI3K was sufficient to mediate these subcellular events. Furthermore, the catalytic PI3K subunit p110alpha (but not p110beta) was identified as the crucial isoform that elicits alphaPDGFR-mediated production of ROS. Finally, bromodeoxyuridine incorporation and chemotaxis assays revealed that the lack of ROS liberation blunted PDGF-AA-dependent chemotaxis but not cell cycle progression. We conclude that PI3K/p110alpha mediates growth factor-dependent ROS production by recruiting p47(phox) and Rac-1 to the cell membrane, thereby assembling the active Nox complex. ROS are required for PDGF-AA-dependent chemotaxis but not proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号