首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Cura?ao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.  相似文献   

2.
Development of fast and accurate methods for monitoring environmental microbial diversity is one of the great challenges in microbiology today. Oligonucleotide probes based on 16S rRNA sequences are widely used to identify bacteria in the environment. However, the successful development of a chip of immobilized 16S rRNA probes for identification of large numbers of species in a single hybridization step has not yet been reported. In reverse sample genome probing (RSGP), labelled total community DNA is hybridized to arrays in which genomes of cultured microorganisms are spotted on a solid support in denatured form. This method has provided useful information on changes in composition of the cultured component of microbial communities in oil fields, the soil rhizhosphere, hydrocarbon-contaminated soils and acid mine drainage sites. Applications and limitations of the method, as well as the prospects of extending RSGP to cover also the as yet uncultured component of microbial communities, are evaluated.  相似文献   

3.
4.
Bacterial communities in both aqueous and oil phases of water-flooded petroleum reservoirs were characterized by molecular analysis of bacterial 16S rRNA genes obtained from Shengli Oil Field using DNA pyrosequencing and gene clone library approaches. Metagenomic DNA was extracted from the aqueous and oil phases and subjected to polymerase chain reaction amplification with primers targeting the bacterial 16S rRNA genes. The analysis by these two methods showed that there was a large difference in bacterial diversity between the aqueous and oil phases of the reservoir fluids, especially in the reservoirs with lower water cut. At a high phylogenetic level, the predominant bacteria detected by these two approaches were identical. However, pyrosequencing allowed the detection of more rare bacterial species than the clone library method. Statistical analysis showed that the diversity of the bacterial community of the aqueous phase was lower than that of the oil phase. Phylogenetic analysis indicated that the vast majority of sequences detected in the water phase were from members of the genus Arcobacter within the Epsilonproteobacteria, which is capable of degrading the intermediates of hydrocarbon degradation such as acetate. The oil phase of reservoir fluid samples was dominated by members of the genus Pseudomonas within the Gammaproteobacteria and the genus Sphingomonas within the Alphaproteobacteria, which have the ability to degrade crude oil through adherence to hydrocarbons under aerobic conditions. In addition, many anaerobes that could degrade the component of crude oil were also found in the oil phase of reservoir fluids, mainly in the reservoir with lower water cut. These were represented by Desulfovibrio spp., Thermodesulfovibrio spp., Thermodesulforhabdus spp., Thermotoga spp., and Thermoanaerobacterium spp. This research suggested that simultaneous analysis of DNA extracted from both aqueous and oil phases can facilitate a better understanding of the bacterial communities in water-flooded petroleum reservoirs.  相似文献   

5.
The effect that culture methods have on the diversity of degradative microbial communities is not well understood. We compared conventional batch enrichment with a biofilm culture method for the isolation of polycyclic aromatic hydrocarbon (PAH)-degrading microbial communities from a PAH-contaminated soil. The two methods were assessed by comparing: (i) the diversity of culturable bacteria; (ii) the diversity of PAH-catabolic genes in isolated bacteria; (iii) the inter- and intraspecific diversity of active PAH-catabolic gene classes; (iv) the diversity of bacteria present in 16S rRNA gene libraries generated from RNA extracted from the two communities and soil; and (v) the estimated diversity of active bacteria in the soil and culture systems. Single-strand conformation polymorphism analysis showed that the biofilm culture yielded 36 bacterial and two fungal species compared with 12 bacterial species from the enrichment culture. Application of accumulation and non-parametric estimators to clone libraries generated from 16S rRNA confirmed that the biofilm community contained greater diversity. Sequencing of clones showed that only species from the Proteobacteria were active in the enrichment culture, and that these species were expressing an identical nahAc-like naphthalene dioxygenase. 16S rRNA clones generated from the biofilm community indicated that species from the Cytophaga/Flavobacterium, high G+C bacteria and Proteobacteria were active at the time of sampling, expressing cndA-, nahAc- and phnAc-like naphthalene dioxygenases. The diversity of active species in the biofilm culture system closely matched that in the PAH-contaminated source soil. The results of this study showed that biofilm culture methods are more appropriate for the study of community-level interactions in PAH-degrading microbial communities. The study also indicated that cultivation of microbial communities on solid media might be the primary source of bias in the recovery of diverse species.  相似文献   

6.
Xiao Y  Zeng GM  Yang ZH  Ma YH  Huang C  Shi WJ  Xu ZY  Huang J  Fan CZ 《Microbial ecology》2011,62(3):599-608
The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp., during the composting. Denaturing gradient gel electrophoresis (DGGE) analysis was employed to investigate the effects of CTC on bacterial diversity, and a community dominated by fewer species was detected in a typical CTC run. The analysis of sequence and phylogeny based on DGGE indicated that the continuously high temperature had changed the structure of bacterial community and strengthened the mainstay role of the thermophilic and spore-forming Bacillus spp. in CTC run.  相似文献   

7.
【背景】昆虫肠道中存在大量的微生物,是昆虫正常生命活动所必需的。它们能够促进维生素的合成、脂肪和碳水化合物的吸收及利用,同时还可以保护宿主抵御天敌,忍受高温以及促进毒素或异生素的代谢,间接促进资源开发。【目的】研究PE塑料饲喂的大蜡螟幼虫肠道可培养细菌的多样性。【方法】利用16S rRNA基因序列分析技术,结合菌落形态和细胞形态及相关生理生化特征鉴定细菌种类。【结果】从大蜡螟幼虫肠道分离纯化的40株可培养细菌得到16种不同细菌遗传型,分别属于芽孢杆菌科(Bacillaceae)、肠球菌科(Enterococcaceae)、葡萄球菌科(Staphylococcaceae)、莫拉菌科(Moraxellaceae)4个科。其中芽孢杆菌科是肠道可培养细菌的优势细菌种类。结合菌落和细胞形态及生理生化特征,确定肠道可培养细菌为芽孢杆菌属9株、肠球菌属4株、葡萄球菌属2株以及不动杆菌属1株。【结论】通过研究大蜡螟幼虫肠道可培养细菌群落结构组成,可为开展大蜡螟肠道的微生态研究提供相关理论基础。  相似文献   

8.
Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue.  相似文献   

9.
Fecal bacteria were studied in healthy elderly volunteers (age, 63 to 90 years; n = 35) living in the local community, elderly hospitalized patients (age, 66 to 103; n = 38), and elderly hospitalized patients receiving antibiotic treatment (age, 65 to 100; n = 21). Group- and species-specific primer sets targeting 16S rRNA genes were used to quantitate intestinal bacteria by using DNA extracted from feces and real-time PCR. The principal difference between healthy elderly volunteers and both patient cohorts was a marked reduction in the Bacteroides-Prevotella group following hospitalization. Reductions in bifidobacteria, Desulfovibrio spp., Clostridium clostridiiforme, and Faecalibacterium prausnitzii were also found in the hospitalized patients. However, total 16S rRNA gene copy numbers (per gram of wet weight of feces) were generally lower in the stool samples of the two groups of hospitalized patients compared to the number in the stool samples of elderly volunteers living in the community, so the relative abundance (percentage of the group- and species-specific rRNA gene copies in relation to total bacterial rRNA gene copies) of bifidobacteria, Desulfovibrio spp., C. clostridiiforme, and F. prausnitzii did not change. Antibiotic treatment resulted in further reductions in the numbers of bacteria and their prevalence and, in some patients, complete elimination of certain bacterial communities. Conversely, the numbers of enterobacteria increased in the hospitalized patients who did not receive antibiotics, and due to profound changes in fecal microbiotas during antibiotic treatment, the opportunistic species Enterococcus faecalis proliferated.  相似文献   

10.
Paper mills processing recycled paper suffer from biofouling causing problems both in the mill and final product. The total bacterial community composition and identification of specific taxa in the process water and biofilms at the stock preparation and paper machine areas in a mill with recycled paper pulp was described by using a DNA-based approach. Process water in a similar mill was also analyzed to investigate if general trends can be found between mills and over time. Bacterial community profiles, analyzed by terminal-restriction fragment length polymorphism (T-RFLP), in process water showed that the dominant peaks in the profiles were similar between the two mills, although the overall composition was unique for each mill. When comparing process water and biofilm at different locations within one of the mills, we observed a separation according to location and sample type, with the biofilm from the paper machine being most different. 16S rRNA gene clone libraries were generated and 404 clones were screened by RFLP analysis. Grouping of RFLP patterns confirmed that the biofilm from the paper machine was most different. A total of 99 clones representing all RFLP patterns were analyzed, resulting in sequences recovered from nine bacterial phyla, including two candidate phyla. Bacteroidetes represented 45% and Actinobacteria 23% of all the clones. Sequences with similarity to organisms implicated in biofouling, like Chryseobacterium spp. and Brevundimonas spp., were recovered from all samples even though the mill had no process problems during sampling, suggesting that they are part of the natural paper mill community. Moreover, many sequences showed little homology to as yet uncultivated bacteria implying that paper mills are interesting for isolation of new organisms, as well as for bioprospecting.  相似文献   

11.
Very little is known about growth rates of individual bacterial taxa and how they respond to environmental flux. Here, we characterized bacterial community diversity, structure and the relative abundance of 16S rRNA and 16S rRNA genes (rDNA) using pyrosequencing along the salinity gradient in the Delaware Bay. Indices of diversity, evenness, structure and growth rates of the surface bacterial community significantly varied along the transect, reflecting active mixing between the freshwater and marine ends of the estuary. There was no positive correlation between relative abundances of 16S rRNA and rDNA for the entire bacterial community, suggesting that abundance of bacteria does not necessarily reflect potential growth rate or activity. However, for almost half of the individual taxa, 16S rRNA positively correlated with rDNA, suggesting that activity did follow abundance in these cases. The positive relationship between 16S rRNA and rDNA was less in the whole water community than for free-living taxa, indicating that the two communities differed in activity. The 16S rRNA:rDNA ratios of some typically marine taxa reflected differences in light, nutrient concentrations and other environmental factors along the estuarine gradient. The ratios of individual freshwater taxa declined as salinity increased, whereas the 16S rRNA:rDNA ratios of only some typical marine bacteria increased as salinity increased. These data suggest that physical and other bottom-up factors differentially affect growth rates, but not necessarily abundance of individual taxa in this highly variable environment.  相似文献   

12.
rRNA-based studies, which have become the most common method for assessing microbial communities, rely upon faithful amplification of the corresponding genes from the original DNA sample. We report here an analysis and reevaluation of commonly used primers for amplifying the DNA between positions 27 and 1492 of bacterial 16S rRNA genes (numbered according to the Escherichia coli rRNA). We propose a formulation for a forward primer (27f) that includes three sequences not usually present. We compare our proposed formulation to two common alternatives by using linear amplification-providing an assessment that is independent of a reverse primer-and in combination with the 1492 reverse primer (1492r) under the PCR conditions appropriate for making community rRNA gene clone libraries. For analyses of DNA from human vaginal samples, our formulation was better at maintaining the original rRNA gene ratio of Lactobacillus spp. to Gardnerella spp., particularly under stringent amplification conditions. Because our 27f formulation remains relatively simple, having seven distinct primer sequences, there is minimal loss of overall amplification efficiency and specificity.  相似文献   

13.
The rhizosphere is an ecosystem exploited by a variety of organisms involved in plant health and environmental sustainability. Abiotic factors influence microorganism–plant interactions, but the microbial community is also affected by expression of heterologous genes from host plants. In the present work, we assessed the community shifts of Alphaproteobacteria phylogenetically related to the Rhizobiales order (Rhizobiales-like community) in rhizoplane and rhizosphere soils of wild-type and transgenic eucalyptus. A greenhouse experiment was performed and the bacterial communities associated with two wild-type (WT17 and WT18) and four transgenic (TR-9, TR-15, TR-22, and TR-23) eucalyptus plant lines were evaluated. The culture-independent approach consisted of the quantification, by real-time polymerase chain reaction (PCR), of a targeted subset of Alphaproteobacteria and the assessment of its diversity using PCR–denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Real-time quantification revealed a lesser density of the targeted community in TR-9 and TR-15 plants and diversity analysis by principal components analysis, based on PCR–DGGE, revealed differences between bacterial communities, not only between transgenic and nontransgenic plants, but also among wild-type plants. The comparison between clone libraries obtained from the transgenic plant TR-15 and wild-type WT17 revealed distinct bacterial communities associated with these plants. In addition, a culturable approach was used to quantify the Methylobacterium spp. in the samples where the identification of isolates, based on 16S rRNA gene sequences, showed similarities to the species Methylobacterium nodulans, Methylobacterium isbiliense, Methylobacterium variable, Methylobacterium fujisawaense, and Methylobacterium radiotolerans. Colonies classified into this genus were not isolated from the rhizosphere but brought in culture from rhizoplane samples, except for one line of the transgenic plants (TR-15). In general, the data suggested that, in most cases, shifts in bacterial communities due to cultivation of transgenic plants are similar to those observed when different wild-type cultivars are compared, although shifts directly correlated to transgenic plant cultivation may be found.  相似文献   

14.
Methods for specific detection of Vibrio anguillarum in complex microbial communities within diverse marine aquaculture environments were evaluated. A system for the detection of culturable cells based on the combined use of a selective medium and a nonradioactively labeled oligodeoxynucleotide complementary to 16S rRNA was developed. Four hundred fourteen bacterial cultures were evaluated in order to assess the specificity of the method. When both the selective medium and the specific probe gave positive results, the cultures were always identified as V. anguillarum. The selectivity for colony hybridization was 1 V. anguillarum cell in 10,000 total bacterial cells in environmental samples. The utility of the method was also compared with detection by dot blot hybridization of either raw DNA purified from environmental samples or PCR-amplified DNA of 16S rRNA genes, using universal eubacterial primers. The post-PCR hybridization was more sensitive (8 x 10(sup2) cells) than direct hybridization of the whole purified DNA (10(sup6) cells). However, the selective medium-probe combined method was as sensitive as post-PCR hybridization, albeit more specific.  相似文献   

15.
An investigation of the microbial community of Lake Baikal by the methods of general and molecular microbiology showed that culturable bacterial strains are represented by various known genera. The lake water contains a great number of bacterial morphotypes, as revealed by electron microscopy, and a great diversity of nonculturable microorganisms belonging to different phylogenetic groups, as revealed by 16S rRNA gene fragment sequencing. The inference is made that the microbial community of Lake Baikal contains not only known species but also new bacterial species that are possibly endemic to the lake.  相似文献   

16.
17.
18.
The investigation of the microbial community of Lake Baikal by the methods of general and molecular microbiology showed that culturable bacterial strains were represented by various known genera. The lake water contains a great number of bacterial morphotypes, as revealed by electron microscopy, and a great diversity of nonculturable microorganisms belonging to different phylogenetic groups, as revealed by 16S rRNA gene fragment sequencing. The inference is made that the microbial community of Lake Baikal contains not only the known species but also new, possibly endemic to the lake, bacterial species.  相似文献   

19.
We studied the effect of ectomycorrhizal fungi on bacterial communities colonizing roots of Douglas fir (Pseudotsuga menziesii). Mycorrhizal tips were cleaned of soil and separated based on gross morphological characteristics. Sequencing of the internal transcribed spacers of the nuclear rRNA gene cluster indicated that the majority of the tips were colonized by fungi in the Russulaceae, with the genera Russula and Lactarius comprising 70% of the tips. Because coamplification of organellar 16S rRNA genes can interfere with bacterial community analysis of root tips, we developed and tested a new primer pair that permits amplification of bacterial 16S rRNA genes but discriminates more effectively against organellar sequences than commonly used bacterial primer sets. We then used terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of the 16S rRNA gene to examine differences in bacterial communities associated with the mycorrhizal tips. Cluster analysis of T-RFLP profiles indicated that there were different bacterial communities among the root tips; however, the communities did not seem to be affected by the taxonomic identity of the ectomycorrhizal fungi. Terminal restriction fragment profiling and sequencing of cloned partial 16S rRNA genes indicated that most bacteria on the ectomycorrhizal tips were related to the Alphaproteobacteria and the Bacteroidetes group.  相似文献   

20.
The diversity and dynamics of a bacterial community extracted from an exploited oil field with high natural soil salinity near Comodoro Rivadavia in Patagonia (Argentina) were investigated. Community shifts during long-term incubation with diesel fuel at four salinities between 0 and 20% NaCl were monitored by single-strand conformation polymorphism community fingerprinting of the PCR-amplified V4-V5 region of the 16S rRNA genes. Information obtained by this qualitative approach was extended by flow cytometric analysis to follow quantitatively the dynamics of community structures at different salinities. Dominant and newly developing clusters of individuals visualized via their DNA patterns versus cell sizes were used to identify the subcommunities primarily involved in the degradation process. To determine the most active species, subcommunities were separated physically by high-resolution cell sorting and subsequent phylogenetic identification by 16S rRNA gene sequencing. Reduced salinity favored the dominance of Sphingomonas spp., whereas at elevated salinities, Ralstonia spp. and a number of halophilic genera, including Halomonas, Dietzia, and Alcanivorax, were identified. The combination of cytometric sorting with molecular characterization allowed us to monitor community adaptation and to identify active and proliferating subcommunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号