共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ATP hydrolysis mechanism of myosin was studied using quantum chemical (QM) and molecular dynamics calculations. The initial model compound for QM calculations was constructed on the basis of the energy-minimized structure of the myosin(S1dc)-ATP complex, which was determined by molecular mechanics calculations. The result of QM calculations suggested that the ATP hydrolysis mechanism of myosin consists of a single elementary reaction in which a water molecule nucleophilically attacked gamma-phosphorus of ATP. In addition, we performed molecular dynamics simulations of the initial and final states of the ATP hydrolysis reaction, that is, the myosin-ATP and myosin-ADP.Pi complexes. These calculations revealed roles of several amino acid residues (Lys185, Thr186, Ser237, Arg238, and Glu459) in the ATPase pocket. Lys185 maintains the conformation of beta- and gamma-phosphate groups of ATP by forming the hydrogen bonds. Thr186 and Ser237 are coordinated to a Mg(2+) ion, which interacts with the phosphates of ATP and therefore contributes to the stabilization of the ATP structure. Arg238 and Glu459, which consisted of the gate of the ATPase pocket, retain the water molecule acting on the hydrolysis at the appropriate position for initiating the hydrolysis. 相似文献
3.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place. 相似文献
4.
Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations
下载免费PDF全文

Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP), the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide hydrolysis and/or binding). 相似文献
5.
Myosin is an ATP-hydrolyzing motor that is critical in muscle contraction. It is well established that in the hydrolysis that it catalyzes a water molecule attacks the gamma-phosphate of an ATP bound to its active site, but the details of these events have remained obscure. This is mainly because crystallographic search has not located an obvious catalytic base near the vulnerable phosphate. Here we suggest a means whereby this dilemma is probably overcome. It has been shown [Fisher, A. J., et al. (1995) Biochemistry 34, 8960-8972; Smith, C. A., and Rayment, I. (1996) Biochemistry 35, 5404-5417] that in an early event, Arg-247 and Glu-470 come together into a "salt-bridge". We suggest that in doing so they also position and orient two contiguous water molecules; one of these becomes the lytic water, perfectly poised to attack the bound gamma-phosphorus. Its hydroxyl moiety attacks the phosphorus, and the resulting proton transfers to the second water, converting it into a hydronium ion (as is experimentally observed). It is shown in this article how these central events of the catalysis are consistent with the behavior of several residues of the neighboring region. 相似文献
6.
Daniella Scherer‐Becker Aruna Sampath Wolfgang Jahnke Sui Sum Yeong Chern Hoe Wang Siew Pheng Lim Alex Strongin Subhash G Vasudevan Julien Lescar 《The EMBO journal》2008,27(23):3209-3219
Together with the NS5 polymerase, the NS3 helicase has a pivotal function in flavivirus RNA replication and constitutes an important drug target. We captured the dengue virus NS3 helicase at several stages along the catalytic pathway including bound to single‐stranded (ss) RNA, to an ATP analogue, to a transition‐state analogue and to ATP hydrolysis products. RNA recognition appears largely sequence independent in a way remarkably similar to eukaryotic DEAD box proteins Vasa and eIF4AIII. On ssRNA binding, the NS3 enzyme switches to a catalytic‐competent state imparted by an inward movement of the P‐loop, interdomain closure and a change in the divalent metal coordination shell, providing a structural basis for RNA‐stimulated ATP hydrolysis. These structures demonstrate for the first time large quaternary changes in the flaviviridae helicase, identify the catalytic water molecule and point to a β‐hairpin that protrudes from subdomain 2, as a critical element for dsRNA unwinding. They also suggest how NS3 could exert an effect as an RNA‐anchoring device and thus participate both in flavivirus RNA replication and assembly. 相似文献
7.
Coupling of protein surface hydrophobicity change to ATP hydrolysis by myosin motor domain. 总被引:1,自引:0,他引:1
下载免费PDF全文

M Suzuki J Shigematsu Y Fukunishi Y Harada T Yanagida T Kodama 《Biophysical journal》1997,72(1):18-23
Dielectric spectroscopy with microwaves in the frequency range between 0.2 and 20 GHz was used to study the hydration of myosin subfragment 1 (S1). The data were analyzed by a method recently devised, which can resolve the total amount of water restrained by proteins into two components, one with a rotational relaxation frequency (fc) in the gigahertz region (weakly restrained water) and the other with lower fc (strongly restrained water). The weight ratio of total restrained water to S1 protein thus obtained (0.35), equivalent to 2100 water molecules per S1 molecule, is not much different from the values (0.3-0.4) for other proteins. The weakly restrained component accounts for about two-thirds of the total restrained water, which is in accord with the number of water molecules estimated from the solvent-accessible surface area of alkyl groups on the surface of the atomic model of S1. The number of strongly restrained water molecules coincides with the number of solvent-accessible charged or polar atoms. The dynamic behavior of the S1-restrained water during the ATP hydrolysis was also examined in a time-resolved mode. The result indicates that when S1 changes from the S1.ADP state into the S1.ADP.P1 state (ADP release followed by ATP binding and cleavage), about 9% of the weakly restrained waters are released, which are restrained again on slow P1 release. By contrast, there is no net mobilization of strongly restrained component. The observed changes in S1 hydration are quantitatively consistent with the accompanying large entropy and heat capacity changes estimated by calorimetry (Kodama, 1985), indicating that the protein surface hydrophobicity change plays a crucial role in the enthalpy-entropy compensation effects observed in the steps of S1 ATP hydrolysis. 相似文献
8.
F1-ATPase catalyzes ATP hydrolysis to drive the central γ-shaft rotating inside a hexameric cylinder composed of alternating α and β subunits. Experiments showed that the rotation of γ-shaft proceeds in steps of 120° and each 120°-rotation is composed of an 80° substep and a 40° substep. Here, based on the previously proposed models, an improved physical model for chemomechanical coupling of F1-ATPase is presented, with which the two-substep rotation is well explained. One substep is driven by the power stroke upon ATP binding, while the other one resulted from the passage of γ-shaft from previous to next adjacent β subunits via free diffusion. Using the model, the dynamics and kinetics of F1-ATPase, such as the rotating time of each substep, the dwell time at each pause and the rotation rate, are analytically studied. The theoretical results obtained with only three adjustable parameters reproduce the available experimental data well. 相似文献
9.
10.
Robert H. Fillingame 《Journal of bioenergetics and biomembranes》1992,24(5):485-491
The F0 sector of the ATP synthase complex facilitates proton translocation through the membrane, and via interaction with the F1 sector, couples proton transport to ATP synthesis. The molecular mechanism of function is being probed by a combination of mutant analysis and structural biochemistry, and recent progress on theEscherichia coli F0 sector is reviewed here. TheE. coli F0 is composed of three types of subunits (a, b, andc) and current information on their folding and organization in F0 is reviewed. The structure of purified subunitc in chloroform-methanol-H2O resembles that in native F0, and progress in determining the structure by NMR methods is reviewed. Genetic experiments suggest that the two helices of subunitc must interact as a functional unit around an essential carboxyl group as protons are transported. In addition, a unique class of suppressor mutations identify a transmembrane helix of subunita that is proposed to interact with the bihelical unit of subunitc during proton transport. The role of multiple units of subunitc in coupling proton translocation to ATP synthesis is considered. The special roles of Asp61 of subunitc and Arg210 of subunita in proton translocation are also discussed. 相似文献
11.
F(1)F(o)-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, F(o) and F(1), which are coupled by a central stalk. The membrane unit, F(o), converts the transmembrane electrochemical potential into mechanical rotation of a rotor in F(o) and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of F(o) and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in F(o). The mechanism that emerged generates the torque at the interface of the a- and c-subunits of F(o) through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. 相似文献
12.
Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60 degrees . This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer. 相似文献
13.
14.
Insights into the decoding mechanism from recent ribosome structures 总被引:19,自引:0,他引:19
During the decoding process, tRNA selection by the ribosome is far more accurate than expected from codon-anticodon pairing. Antibiotics such as streptomycin and paromomycin have long been known to increase the error rate of translation, and many mutations that increase or lower accuracy have been characterized. Recent crystal structures show that the specific recognition of base-pairing geometry leads to a closure of the domains of the small subunit around cognate tRNA. This domain closure is likely to trigger subsequent steps in tRNA selection. Many antibiotics and mutations act by making the domain closure more or less favourable. In conjunction with recent cryoelectron microscopy structures of the ribosome, a comprehensive structural understanding of the decoding process is beginning to emerge. 相似文献
15.
Binding of myosin to actin in myofibrils during ATP hydrolysis 总被引:4,自引:0,他引:4
Measurements of cross-bridge attachment to actin in myofibrils during ATP hydrolysis require prior fixation of myofibrils to prevent their contraction. The optimal cross-linking of myofibrils was achieved by using 10 mM carbodiimide (EDC) under rigor conditions and at 4 degrees C. The fixed myofibrils had elevated MgATPase activity (150%) and could not contract. As judged by chymotryptic digestions and subsequent SDS gel electrophoresis analysis, less than 25% of myosin heads were cross-linked in these myofibrils. The isolated, un-cross-linked myosin heads showed pH-dependent Ca2+- and EDTA(K+)-ATPase activities similar to those of standard intact S-1. For measurements of myosin binding to actin, the modified myofibrils were digested with trypsin at a weight ratio of 1:50 under rigor, relaxed, and active-state conditions. Aliquots of tryptic digestion reactions were then cleaved with chymotrypsin to yield isolated myosin heads and their fragments. Analysis of the decay of myosin heavy-chain bands on SDS gels yielded the rates of myosin cleavage under all conditions and enabled the measurements of actomyosin binding in myofibrils in the presence of MgATP. Using this approach, we detected rigorlike binding of 25 +/- 6% of myosin heads to actin in myofibrils during ATP hydrolysis. 相似文献
16.
Nakano M Imamura H Toei M Tamakoshi M Yoshida M Yokoyama K 《The Journal of biological chemistry》2008,283(30):20789-20796
Vacuolar-type H(+)-ATPase (V-ATPase) catalyzes ATP synthesis and hydrolysis coupled with proton translocation across membranes via a rotary motor mechanism. Here we report biochemical and biophysical catalytic properties of V-ATPase from Thermus thermophilus. ATP hydrolysis of V-ATPase was severely inhibited by entrapment of Mg-ADP in the catalytic site. In contrast, the enzyme was very active for ATP synthesis (approximately 70 s(-1)) with the K(m) values for ADP and phosphate being 4.7 +/- 0.5 and 460 +/- 30 microm, respectively. Single molecule observation showed V-ATPase rotated in a 120 degrees stepwise manner, and analysis of dwelling time allowed the binding rate constant k(on) for ATP to be estimated ( approximately 1.1 x 10(6) m(-1) s(-1)), which was much lower than the k(on) (= V(max)/K(m)) for ADP ( approximately 1.4 x 10(7) m(-1) s(-1)). The slower k(on)(ATP) than k(on)(ADP) and strong Mg-ADP inhibition may contribute to prevent wasteful consumption of ATP under in vivo conditions when the proton motive force collapses. 相似文献
17.
Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament. 相似文献
18.
In this paper, we present the results of experimental studies on the influence of different magnesium isotopes, magnetic 25Mg and nonmagnetic 24Mg or 26Mg, on ATP-hydrolytic activity of the isolated myosin subfragment-1. The reaction rate in the presence of magnetic 25Mg isotope turned out to be 2.0–2.5 times higher than that using non-magnetic 24Mg or 26Mg isotopes. In absence of the enzyme, as at spontaneous ATP hydrolysis in aqueous solution, no magnetic isotope effect was observed. Thus, a significant catalytic effect of the magnetic 25Mg isotope (nuclear spin catalysis) was discovered in the enzymatic hydrolysis of ATP. 相似文献
19.
To understand the mechanism of kinesin movement we have investigated the relative configuration of the two kinesin motor domains during ATP hydrolysis using fluorescence polarization microscopy of ensemble and single molecules. We found that: (i) in nucleotide states that induce strong microtubule binding, both motor domains are bound to the microtubule with similar orientations; (ii) this orientation is maintained during processive motion in the presence of ATP; (iii) the neck-linker region of the motor domain has distinct configurations for each nucleotide condition tested. Our results fit well with a hand-over-hand type movement mechanism and suggest how the ATPase cycle in the two motor domains is coordinated. We propose that the motor neck-linker domain configuration controls ADP release. 相似文献