首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field.  相似文献   

2.
Ancient DNA has been discovered in many types of preserved biological material, including bones, mummies, museum skins, insects in amber and plant fossils, and has become an important research tool in disciplines as diverse as archaeology, conservation biology and forensic science. In archaeology, ancient DNA can contribute both to the interpretation of individual sites and to the development of hypotheses about past populations. Site interpretation is aided by DNA-based sex typing of fragmentary human bones, and by the use of genetic techniques to assess the degree of kinship between the remains of different individuals. On a broader scale, population migrations can be traced by studying genetic markers in ancient DNA, as in recent studies of the colonisation of the Pacific islands, while ancient DNA in preserved plant remains can provide information on the development of agriculture.  相似文献   

3.
Museum curators and living communities are sometimes reluctant to permit ancient DNA (aDNA) studies of human skeletal remains because the extraction of aDNA usually requires the destruction of at least some skeletal material. Whether these views stem from a desire to conserve precious materials or an objection to destroying ancestral remains, they limit the potential of aDNA research. To help address concerns about destructive analysis and to minimize damage to valuable specimens, we describe a nondestructive method for extracting DNA from ancient human remains. This method can be used with both teeth and bone, but it preserves the structural integrity of teeth much more effectively than that of bone. Using this method, we demonstrate that it is possible to extract both mitochondrial and nuclear DNA from human remains dating between 300 BC and 1600 AD. Importantly, the method does not expose the remains to hazardous chemicals, allowing them to be safely returned to curators, custodians, and/or owners of the samples. We successfully amplified mitochondrial DNA from 90% of the individuals tested, and we were able to analyze 1-9 nuclear loci in 70% of individuals. We also show that repeated nondestructive extractions from the same tooth can yield amplifiable mitochondrial and nuclear DNA. The high success rate of this method and its ability to yield DNA from samples spanning a wide geographic and temporal range without destroying the structural integrity of the sampled material may make possible the genetic study of skeletal collections that are not available for destructive analysis.  相似文献   

4.
古DNA实时荧光定量PCR实验中标准品的制备   总被引:1,自引:0,他引:1  
实时荧光定量PCR技术通过对PCR每一循环扩增产物的实时检测,可对模板的精确拷贝数进行绝对定量,从而用于古DNA实验中提取和扩增条件的比较和优化.本研究采用异硫氰酸胍碱裂解-SiO2吸附的方法,从采自黑龙江省的晚更新世斑鬣狗化石材料中提取得到了斑鬣狗线粒体基因组古DNA.经常规PCR扩增后,将纯化的扩增产物克隆到微生物体内使其大量复制,再用M13通用引物扩增出含少量外源DNA的古DNA目标片段,从而建立了适用于古DNA荧光定量PCR扩增的标准品的制备方法.经检测分析,运用该方法制备的标准品性质稳定,能够准确地指示反应体系中较为精确的古DNA模板拷贝数,从而反映古DNA的提取和扩增效率,用于比较并优化古DNA提取和扩增条件.  相似文献   

5.
Ancient DNA (aDNA) recovered from archaeobotanical remains can provide key insights into many prominent archaeological research questions, including processes of domestication, past subsistence strategies, and human interactions with the environment. However, it is often difficult to isolate aDNA from ancient plant materials, and furthermore, such DNA extracts frequently contain inhibitory substances that preclude successful PCR amplification. In the age of high-throughput sequencing, this problem is even more significant because each additional endogenous aDNA molecule improves analytical resolution. Therefore, in this paper, we compare a variety of DNA extraction techniques on primarily desiccated archaeobotanical remains and identify which method consistently yields the greatest amount of purified DNA. In addition, we test five DNA polymerases to determine how well they replicate DNA extracted from non-charred ancient plant remains. Based upon the criteria of resistance to enzymatic inhibition, behavior in quantitative real-time PCR, replication fidelity, and compatibility with aDNA damage, we conclude these polymerases have nuanced properties, requiring researchers to make educated decisions as to which one to use for a given task. The experimental findings should prove useful to the aDNA and archaeological communities by guiding future research methodologies and ensuring precious archaeobotanical remains are studied in optimal ways, and may thereby yield important new perspectives on the interactions between humans and past plant communities.  相似文献   

6.
Various studies on ancient DNA have attempted to reconstruct population movement in Asia, with much interest focused on determining the arrival of European lineages in ancient East Asia. Here, we discuss our analysis of the mitochondrial DNA of human remains excavated from the Yu Hong tomb in Taiyuan, China, dated 1400 years ago. The burial style of this tomb is characteristic of Central Asia at that time. Our analysis shows that Yu Hong belonged to the haplogroup U5, one of the oldest western Eurasian-specific haplogroups, while his wife can be classified as haplogroup G, the type prevalent in East Asia. Our findings show that this man with European lineage arrived in Taiyuan approximately 1400 years ago, and most probably married a local woman. Haplogroup U5 was the first west Eurasian-specific lineage to be found in the central part of ancient China, and Taiyuan may be the easternmost location of the discovered remains of European lineage in ancient China.  相似文献   

7.
Authentication of ancient human DNA results is an exceedingly difficult challenge due to the presence of modern contaminant DNA sequences. Nevertheless, the field of ancient human genetics generates huge scientific and public interest, and thus researchers are rarely discouraged by problems concerning the authenticity of such data. Although several methods have been developed to the purpose of authenticating ancient DNA (aDNA) results, while they are useful in faunal research, most of the methods have proven complicated to apply to ancient human DNA. Here, we investigate in detail the reliability of one of the proposed criteria, that of appropriate molecular behavior. Using real-time polymerase chain reaction (PCR) and pyrosequencing, we have quantified the relative levels of authentic aDNA and contaminant human DNA sequences recovered from archaeological dog and cattle remains. In doing so, we also produce data that describes the efficiency of bleach incubation of bone powder and its relative detrimental effects on contaminant and authentic ancient DNA. We note that bleach treatment is significantly more detrimental to contaminant than to authentic aDNA in the bleached bone powder. Furthermore, we find that there is a substantial increase in the relative proportions of authentic DNA to contaminant DNA as the PCR target fragment size is decreased. We therefore conclude that the degradation pattern in aDNA provides a quantifiable difference between authentic aDNA and modern contamination. This asymmetrical behavior of authentic and contaminant DNA can be used to identify authentic haplotypes in human aDNA studies.  相似文献   

8.
二代测序技术的进步推动了古DNA研究的发展,古DNA研究在人类起源、动物演化等领域已经做出突出贡献。如何针对特定地点的古DNA样品特征,有效提取挖掘其中蕴含的古生物遗传信息,是发挥古代生物样品在诸多研究领域重要作用的前提。本研究将DNA损伤的两个主要指标(末端碱基替换率、平均片段长度)与样品的埋藏时间、所属地质时期、样品材料类型和建库方法相联系,分析不同因素对古DNA损伤的影响。结果表明:中国东北古脊椎动物样品中的古DNA分子的末端碱基替换率与埋藏点的含水量、样品埋藏时间呈正相关;不同地质时期的样品之间古DNA末端碱基替换率有显著差异;不同样品材料类型对于古DNA的末端碱基替换率未见明显影响;样品古DNA的平均片段长度与以上所研究的因素均无明显关系。研究结果为探明中国东北古脊椎动物样品的古DNA特征提供了分子依据,为有效选取不同地区的古脊椎动物样品及样品发掘后的合理保存提供了借鉴和参考。  相似文献   

9.
The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples.  相似文献   

10.
利用古DNA手段对考古发掘出土的人类遗骸进行遗传分析, 是揭示当地古代人群来源的重要手段。我们通过克隆测序和PCR-RFLP的方法, 从来自青海大通上孙家寨的约3000-3300年前和2000年前两个不同年代的牙齿样本中, 成功得到59个线粒体高变I区和编码区的SNP位点的序列信息。之后我们将所得序列与来自亚洲大陆的34个现代人群共1833个个体和2个不同年代的古代人群样本的线粒体序列分别在个体和群体水平上作比较,结果表明这两个时期人群并不是一脉相承的。  相似文献   

11.
One of the key problems in the study of ancient DNA is that of authenticating sequences obtained from PCR amplifications of highly degraded samples. Contamination of ancient samples and postmortem damage to endogenous DNA templates are the major obstacles facing researchers in this task. In particular, the authentication of sequences obtained from ancient human remains is thought by many to be rather challenging. We propose a novel approach, based on the c statistic, that can be employed to help identify the sequence motif of an endogenous template, based on a sample of sequences that reflect the nucleotide composition of individual template molecules obtained from ancient tissues (such as cloned products from a PCR amplification). The c statistic exploits as information the most common form of postmortem damage observed among clone sequences in ancient DNA studies, namely, lesion-induced substitutions caused by cytosine deamination events. Analyses of simulated sets of templates with miscoding lesions and real sets of clone sequences from the literature indicate that the c-based approach is highly effective in identifying endogenous sequence motifs, even when they are not present among the sampled clones. The proposed approach is likely to be of general use to researchers working with DNA from ancient tissues, particularly from human remains, where authentication of results has been most challenging. [Reviewing Editor: Dr. Magnus Nordborg]  相似文献   

12.
High‐capacity sequencing technologies have dramatically reduced both the cost and time required to generate complete human genome sequences. Besides expanding our knowledge about existing diversity, the nature of these technologies makes it possible to extend knowledge in yet another dimension: time. Recently, the complete genome sequence of a 4,000‐year‐old human from the Saqqaq culture of Greenland was determined to 20‐fold coverage. These data make it possible to investigate the population affinities of this enigmatic culture and, by identifying several phenotypic traits of this individual, provide a limited glimpse into how these people may have looked. While undoubtedly a milestone in ancient DNA research, the cost to generate an ancient genome, even from such an exceptionally preserved specimen, remains out of reach for most. Nonetheless, recently developed DNA capture methods, already applied to Neanderthal and fossil human mitochondrial DNA, may soon make large‐scale genome‐wide analysis of ancient human diversity a reality, providing a fresh look at human population history.  相似文献   

13.
Ancient DNA (aDNA) analysis can be a useful tool in bacterial disease diagnosis in human remains. However, while the recovery of Mycobacterium spp. has been widely successful, several authors report unsuccessful results regarding ancient treponemal DNA, casting doubts on the usefulness of this technique for the diagnosis of ancient syphilis. Here, we present results from an analysis of four newborn specimens recovered from the crypt of "La Ermita de la Soledad" (XVI-XVII centuries), located in the province of Huelva in the southwest of Spain. We extracted and analyzed aDNA in three independent laboratories, following specific procedures generally practiced in the aDNA field, including cloning of the amplified DNA fragments and sequencing of several clones. This is the most ancient case, reported to date, from which detection of DNA from T. pallidum subspecies pallidum has been successful in more than one individual, and we put forward a hypothesis to explain this result, taking into account the course of the disease in neonate individuals.  相似文献   

14.
We present a cost‐effective metabarcoding approach, aMPlex Torrent, which relies on an improved multiplex PCR adapted to highly degraded DNA, combining barcoding and next‐generation sequencing to simultaneously analyse many heterogeneous samples. We demonstrate the strength of these improvements by generating a phylochronology through the genotyping of ancient rodent remains from a Moroccan cave whose stratigraphy covers the last 120 000 years. Rodents are important for epidemiology, agronomy and ecological investigations and can act as bioindicators for human‐ and/or climate‐induced environmental changes. Efficient and reliable genotyping of ancient rodent remains has the potential to deliver valuable phylogenetic and paleoecological information. The analysis of multiple ancient skeletal remains of very small size with poor DNA preservation, however, requires a sensitive high‐throughput method to generate sufficient data. We show this approach to be particularly adapted at accessing this otherwise difficult taxonomic and genetic resource. As a highly scalable, lower cost and less labour‐intensive alternative to targeted sequence capture approaches, we propose the aMPlex Torrent strategy to be a useful tool for the genetic analysis of multiple degraded samples in studies involving ecology, archaeology, conservation and evolutionary biology.  相似文献   

15.
The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution.  相似文献   

16.
古DNA技术在人类墓葬遗骸研究中的应用及进展   总被引:1,自引:0,他引:1  
考古工作中得到的生物遗骸由于长期的风化,自然侵蚀等因素的影响,遗骸本身含有的古代生物的DNA的大部分会分解,使得对遗骸中的生物遗传信息研究变得非常困难.可将现代生物工程的PCR技术应用到考古工作中,该技术能够对残存的微量DNA进行大量的生物体外扩增,得到更多的古代生物的遗传信息,提高时遗骸种属鉴定的准确性.通过对出土的人类遗骸中微量DNA的扩增、测试和遗骸间DNA序列的对比,在计算机软件的帮助下与已知的人类DNA序列进行比较,能确定同一墓葬中不同遗骸的亲缘关系和该遗骸群体在整个人类进化体系中的位置.对这一试验过程的一些方法、技术、研究进展和目前仍然面临的一些问题作了介绍.  相似文献   

17.
方兴未艾的古代DNA的研究   总被引:9,自引:2,他引:7  
蔡胜和  杨焕明 《遗传》2000,22(1):41-46
保留在古代生物遗骸中的遗传物质DNA是一种重要的遗传资源。古代DNA的研究对于了解包括人类在内的各种生物的起源、进化和迁徙有重要意义。古代DNA的研究有其自身的特点,并且已经取得一系列重要成就。本文综述古代DNA研究的历史、方法和进展。 Abstract:DNA present in ancient samples can be recovered,amplified and analysed.It opens a new window for genetic analysis in many different disciplines,such as anthropology,archaeology,human population genetics,animal and plant evolutionary taxonomy and forensic science.In general,ancient DNA is rare in quantity,damaged in quality.To ensure the reproducibility and reliability of the results,great cares should be taken,such as various measurements against contamination and phylogenetic analysis of ancient DNA sequences.In this paper we review recovery,amplification and analysis of ancient DNA,also discuss the guidelines to ensure the authenticity of ancient DNA and the recent advances in ancient DNA study.  相似文献   

18.
BACKGROUND: The reconstruction of biological processes and human activities during the last glacial cycle relies mainly on data from biological remains. Highly abundant tissues, such as wood, are candidates for a genetic analysis of past populations. While well-authenticated DNA has now been recovered from various fossil remains, the final 'proof' is still missing for wood, despite some promising studies. SCOPE: The goal of this study was to determine if ancient wood can be analysed routinely in studies of archaeology and palaeogenetics. An experiment was designed which included blind testing, independent replicates, extensive contamination controls and rigorous statistical tests. Ten samples of ancient wood from major European forest tree genera were analysed with plastid DNA markers. CONCLUSIONS: Authentic DNA was retrieved from wood samples up to 1,000 years of age. A new tool for real-time vegetation history and archaeology is ready to use.  相似文献   

19.
Mitochondrial DNA sequences from a 7000-year old brain.   总被引:26,自引:1,他引:25       下载免费PDF全文
Pieces of mitochondrial DNA from a 7000-year-old human brain were amplified by the polymerase chain reaction and sequenced. Albumin and high concentrations of polymerase were required to overcome a factor in the brain extract that inhibits amplification. For this and other sources of ancient DNA, we find an extreme inverse dependence of the amplification efficiency on the length of the sequence to be amplified. This property of ancient DNA distinguishes it from modern DNA and thus provides a new criterion of authenticity for use in research on ancient DNA. The brain is from an individual recently excavated from Little Salt Spring in southwestern Florida and the anthropologically informative sequences it yielded are the first obtained from archaeologically retrieved remains. The sequences show that this ancient individual belonged to a mitochondrial lineage that is rare in the Old World and not previously known to exist among Native Americans. Our finding brings to three the number of maternal lineages known to have been involved in the prehistoric colonization of the New World.  相似文献   

20.
In the present work, DNA was extrated from 63 skeletal samples recovered at the Neolithic site of San Juan ante Portam Latinam (SJAPL) (Araba, Basque Country). These samples have proved useful as genetic material for the performance of population studies. To achieve this it was necessary to overcome the methodological problems arising when working with damaged DNA molecules. We succeeded in performing an amplification and restriction analysis of the polymorphisms present in the mtDNA. Ninety seven percent of the samples were classified as belonging to one of the nine mtDNA haplogroups described in Caucasians. This work shows that restriction analysis is a useful methodological tool to perform reliable population genetic analysis on archaeological remains. Tha analysis of ancient and modern haplogroup distribution can shed more light on the genetic evolution of human populations. Moreover, a more exhaustive data on prehistoric populations will allow to build stronger hypothesis on the genetic relationships among human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号