首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramuscular connective tissue (IMCT) is mainly composed of several fibrils (known as total collagen (TCol)) linked between each other by different chemical cross-links (CLs), the whole being embedded in a matrix of proteoglycans (PGs). In the field of beef quality, there is limited information on the role of CLs and PGs. Accordingly, several authors suggest that, to investigate the role of IMCT, it is important to investigate them just like TCol and insoluble collagen (ICol). In muscle, there are two other components, the muscle fibres and intramuscular fat (IMF) content. There are limited data on the relationships between these three components of muscle and then on possibility to independently manipulate these characteristics in order to control the final quality of meat. The present study aimed to investigate whether consistent relationships exist between these different components of muscle. Therefore, the present study compared four muscles of two cattle types (dairy and beef) to determine associations between TCol, ICol, CLs and PGs. Data were analysed across and within muscle (M) and animal type (AT) based on residuals. There was a strong M and AT effect for all muscle characteristics and an interaction M × AT for type I muscle fibres and IMF. Correlations between TCol, ICol and their CLs were M- and AT-independent. Total proteoglycans were positively correlated with TCol and ICol in a muscle-dependent manner irrespective of AT, but no correlation was found with CLs. On the contrary, CLs were negatively correlated with the ratio TPGs : TCol in an M-dependent manner, irrespective of AT. TCol, ICol and CLs were positively and negatively correlated with type IIA and IIB+X muscle fibres only in longissimus thoracis (LT) muscle, regardless the AT. Insoluble collagen was the only parameter of IMCT to be correlated with type I muscle fibres but only in LT muscle, irrespective of AT. There was no correlation between PGs and muscle fibre types, but PGs were the only IMCT component to be related with IMF in an M-dependent manner, irrespective of AT. Finally, there was no correlation between muscle fibre types and IMF content within M and AT. This study revealed that there is a strong relationship between IMCT components irrespective of M, an M-dependent relationship between the IMCT components and muscle fibre types and few (only with PGs) or no relationship between IMF and IMCT and muscle fibres.  相似文献   

2.
The biomechanical properties of connective tissues play fundamental roles in how mechanical interactions of the body with its environment produce physical forces at the cellular level. It is now recognized that mechanical interactions between cells and the extracellular matrix (ECM) have major regulatory effects on cellular physiology and cell-cycle kinetics that can lead to the reorganization and remodeling of the ECM. The connective tissues are composed of cells and the ECM, which includes water and a variety of biological macromolecules. The macromolecules that are most important in determining the mechanical properties of these tissues are collagen, elastin, and proteoglycans. Among these macromolecules, the most abundant and perhaps most critical for structural integrity is collagen. In this review, we examine how mechanical forces affect the physiological functioning of the lung parenchyma, with special emphasis on the role of collagen. First, we overview the composition of the connective tissue of the lung and their complex structural organization. We then describe how mechanical properties of the parenchyma arise from its composition as well as from the architectural organization of the connective tissue. We argue that, because collagen is the most important load-bearing component of the parenchymal connective tissue, it is also critical in determining the homeostasis and cellular responses to injury. Finally, we overview the interactions between the parenchymal collagen network and cellular remodeling and speculate how mechanotransduction might contribute to disease propagation and the development of small- and large-scale heterogeneities with implications to impaired lung function in emphysema.  相似文献   

3.
Summary The effects of overload on the connective tissue component of the soleus muscle of the rat have been investigated. Three weeks after tenotomy of its synergistic muscles the soleus underwent considerable increase in weight. This was shown to have resulted from an increase in size of the predominant fibre type. Whilst occasional groups of fibres appeared to have resulted from the splitting of large single fibres, there was no significant increase in the number of fibres in cross-section of the muscle belly. The connective tissue content of the overloaded muscles was investigated using both histological and biochemical techniques. It was found that muscle fibre hypertrophy was accompanied by an increase in the connective tissue component. Furthermore, there was an increase in the proportion of collagen to muscle fibre tissue.The author wish to acknowledge the expert technical assistance given by Mr P. Prentis. This investigation was supported by a grant from the Medical Research Council.  相似文献   

4.
Osteopontin is a multifunctional matricellular protein that is expressed by many cell types. Through cell-matrix and cell-cell interactions the molecule elicits a number of responses from a broad range of target cells via its interaction with integrins and the hyaluronan receptor CD44. In many tissues osteopontin has been found to be involved in important physiological and pathological processes, including tissue repair, inflammation and fibrosis. Post-natal skeletal muscle is a highly differentiated and specialised tissue that retains a remarkable capacity for regeneration following injury. Regeneration of skeletal muscle requires the co-ordinated activity of inflammatory cells that infiltrate injured muscle and are responsible for initiating muscle fibre degeneration and phagocytosis of necrotic tissue, and muscle precursor cells that regenerate the injured muscle fibres. This review focuses on the current evidence that osteopontin plays multiple roles in skeletal muscle, with particular emphasis on its role in regeneration and fibrosis following injury, and in determining the severity of myopathic diseases such as Duchenne muscular dystrophy.  相似文献   

5.
Structures contributing to force transmission in muscle are reviewed combining some historical and relatively recently published experimental data. Also, effects of aponeurotomy and tenotomy are reviewed shortly as well as some new experimental results regarding these interventions that reinforce the concept of myofascial force transmission. The review is also illustrated by some new images of single muscle fibres from Xenopus Laevis indicative of such transmission and some data about locations of insertion of human gluteus maximus muscle. From this review and the new material, emerges a line of thought indicating that mechanical connections between muscle fibres and intramuscular connective tissue play an important role in force transmission. New experimental observations are presented for non-spanning muscle (i.c., rat biceps femoris muscle), regarding the great variety of types of intramuscular connections that exist i n addition to myo-tendinous junctions at the perimuscular ends of muscle fibres. Such connections are classified as (1) tapered end connections, (2) Myo-myonal junctions, (3) myo-epimysial junctions and (3) Myo-endomysial junctions. This line of thought is followed up by consideration of a possible role of connections of intra- and extramuscular connective tissue in force transmission out of the muscle. Experimental results of an explorative nature, regarding the interactions of extensor digitorum longus (EDL), tibialis anterior (TA) and hallucis longus (HAL) muscles within a relatively intact dorsal flexor compartment of the rat hind leg, indicate that: (1) length force properties of EDL are influenced by TA activity in a length dependent fashion. Depending on TA length, force exerted by EDL, kept at constant origin insertion distance, is variable and the effect is influenced by EDL length itself as well; (2) Force is transmitted from muscle to extramuscular connective tissue and vice versa. As a consequence force exerted at proximal and distal tendons of a muscle are not always equal. The difference being transmitted by extramuscular connective tissue and may appear at the tendons of other muscles or may be transmitted via connective tissue directly to bone. It is concluded that the system of force transmission from skeletal muscle should be considered as a multiple system.  相似文献   

6.
Tissue functions and mechanical coupling of cells must be integrated throughout development. A striking example of this coupling is the interactions of body wall muscle and hypodermal cells in Caenorhabditis elegans. These tissues are intimately associated in development and their interactions generate structures that provide a continuous mechanical link to transmit muscle forces across the hypodermis to the cuticle. Previously, we established that mup-4 is essential in embryonic epithelial (hypodermal) morphogenesis and maintenance of muscle position. Here, we report that mup-4 encodes a novel transmembrane protein that is required for attachments between the apical epithelial surface and the cuticular matrix. Its extracellular domain includes epidermal growth factor-like repeats, a von Willebrand factor A domain, and two sea urchin enterokinase modules. Its intracellular domain is homologous to filaggrin, an intermediate filament (IF)-associated protein that regulates IF compaction and that has not previously been reported as part of a junctional complex. MUP-4 colocalizes with epithelial hemidesmosomes overlying body wall muscles, beginning at the time of embryonic cuticle maturation, as well as with other sites of mechanical coupling. These findings support that MUP-4 is a junctional protein that functions in IF tethering, cell-matrix adherence, and mechanical coupling of tissues.  相似文献   

7.
Histological studies revealed that the mammary gland nipple have smooth muscle fibres along the nipple channel. These fibres infiltrate the connective tissue parallel to the skin. The ring muscles are not obvious. Delays in the milk excretion in mice may be due to specifics of allocation and functioning of the nipple smooth muscles. To obtain milk, a mechanical action upon the nipple and a synchronised release of oxitocin into the blood are necessary.  相似文献   

8.
Localization of hyaluronan in various muscular tissues   总被引:4,自引:0,他引:4  
Summary The histochemical distribution of hyaluronan (hyaluronic acid, HYA) was analysed in various types of muscles in the rat by use of a hyaluronan-binding protein (HABP) and the avidin-biotin/peroxidase complex staining procedure. Microwave-aided fixation was used to retain the extracellular location of the glycosaminoglycan. In skeletal muscles, HYA was detected in the connective tissue sheath surrounding the muscles (epimysium), in the septa subdividing the muscle fibre bundles (perimysium) and in the connective tissue surrounding each muscle fibre (endomysium). HYA was heterogeneously distributed in all striated muscles. In skeletal muscles with small fibre dimensions (e.g., the lateral rectus muscle of the eye and the middle ear muscles), HYA was predominantly accumulated around the individual muscle fibres. Perivascular and perineural connective tissue formations were distinctly HYA-positive. In cardiac muscles, HYA was randomly distributed around the branching and interconnecting muscle fibres. In comparison, smooth muscle tissue was devoid of HYA.  相似文献   

9.
Summary The fine structure of the muscle of the urinary bladder in female rats is similar to that of other visceral muscles, although it is arranged in bundles of variable length, cross-section and orientation, forming a meshwork. When distended, the musculature is 100–120 m thick, with some variation and occasional discontinuity. Extended areas of cell-to-cell apposition with uniform intercellular space occur between muscle cells, whereas attachment plaques for mechanical coupling are less common than in other visceral muscles. There are no gap junctions between muscle cells. Many bundles of microfilaments and small elastic fibres run between the muscle cells. After chronic partial obstruction of the urethra, the bladder enlarges and is about 15 times heavier, but has the same shape as in controls; the growth is mainly accounted for by muscle hypertrophy. The outer surface of the hypertrophic bladder is increased 6-fold over the controls; the muscle is increased 3-fold in thickness, and is more compact. Mitoses are not found, but there is a massive increase in muscle cell size. There is a modest decrease in percentage volume of mitochondria, an increase in sarcoplasmic reticulum, and no appreciable change in the pattern of myofilaments. Gap junctions between hypertrophic muscle cells are virtually absent. Intramuscular nerve fibres and vesicle-containing varicosities appear as common in the hypertrophic muscle as in controls. There is no infiltration of the muscle by connective tissue and no significant occurrence of muscle cell death.  相似文献   

10.
By means of light optic and electron microscopy (SAM, TAM) histoconstruction of the connective tissue structures of the human skeletal muscles have been investigated and its analysis has been performed from biomechanical point of view. Fibrillar elements of the connective tissue are demonstrated to play an important role in structural adaptation of the skeletal muscle, as the organ, performing certain mechanical functions. The data obtained makes it possible to formulate the state, that the fibrillar network of the connective tissue is a polyfunctional system, that ensures integration of the structural elements of the muscle, transmission of mechanical strains, is the carcass of the organ and participates in formation of its buffer and amortizational mechanisms. The integration mechanisms of the main functional elements of the muscle belly, tendons and fascia to a great extent are of a unification character.  相似文献   

11.
The present study was aimed to localise lymphatic vessels and their growth factors in human and mouse skeletal muscle with immunohistochemistry and specific antibodies (VEGFR-3, LYVE-1, VEGF-C and VEGF-D). The largest lymphatic vessels were found in perimysial connective tissue next to the arteries and veins, as has been shown earlier with electron microscopy. As a new finding, we also found small LYVE-1 positive vessels in the capillary bed between muscle fibres. These vessels were located next to CD31 positive blood capillaries and were of the same size, but fewer in number. In addition, we described the localisation of the two main lymphangiogenic growth factor proteins, vascular endothelial growth factor-C and -D. Both proteins were expressed in skeletal muscle at mRNA and protein levels. VEGF-D was located under the sarcolemma in some of the muscle fibres, in the endothelia of larger blood vessels and in fibroblasts. VEGF-C protein was localised to the nerves and muscle spindles, to fibroblasts and surrounding connective tissue, but was not found in muscle fibres or endothelial cells. Our results are the first to suggest the presence of lymphatic capillaries throughout the skeletal muscle, and to present the localisation of VEGF-C and -D in the muscles. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

12.
Biochemical and mechanical cues of the extracellular matrix have been shown to play important roles in cell-matrix and cell-cell interactions. We have experimentally tested the combined influence of these cues to better understand cell motility, force generation, cell-cell interaction, and assembly in an in vitro breast cancer model. MCF-10A non-tumorigenic mammary epithelial cells were observed on surfaces with varying fibronectin ligand concentration and polyacrylamide gel rigidity. Our data show that cell velocity is biphasic in both matrix rigidity and adhesiveness. The maximum cell migration velocity occurs only at specific combination of substrate stiffness and ligand density. We found cell-cell interactions reduce migration velocity. However, the traction forces cells exert onto the substrate increase linearly with both cues, with cells in pairs exerting higher maximum tractions observed over single cells. A relationship between force and motility shows a maximum in single cell velocity not observed in cell pairs. Cell-cell adhesion becomes strongly favored on softer gels with elasticity ≤ 1250 Pascals (Pa), implying the existence of a compliance threshold that promotes cell-cell over cell-matrix adhesion. Finally on gels with stiffness similar to pre-malignant breast tissue, 400 Pa, cells undergo multicellular assembly and division into 3D spherical aggregates on a 2D surface.  相似文献   

13.
The lateral fins of cuttlefish and squid consist of a tightly packed three-dimensional array of musculature that lacks bony skeletal support or fluid-filled cavities for hydrostatic skeletal support. During swimming and manoeuvring, the fins are bent upward and downward in undulatory waves. The fin musculature is arranged in three mutually perpendicular planes. Transverse muscle bundles extend parallel to the fin surface from the base of the fin to the fin margin. Dorso-ventral muscle bundles extend from dorsal and ventral connective tissue fasciae to a median connective tissue fascia. A layer of longitudinal muscle bundles is situated adjacent to both the dorsal and ventral surface of the median fascia. The muscle fibres are obliquely striated and include a core of mitochondria. A zone of muscle fibres with a more extensive core of mitochondria is present in both the dorsal and the ventral transverse muscle bundles. It is hypothesized that these muscle masses include two fibre types with different aerobic capacity. A network of connective tissue fibres is present in the transverse and dorso-ventral muscle masses. These fibres, probably collagen, are oriented at 45 to the long axes of the transverse and dorsoventral muscle fibres in transverse planes.
A biomechanicayl analysis of the morphology suggests that support for fin movements is provided by simultaneous contractile activity of muscles of specific orientations in a manner similar to that proposed for other 'muscular-hydrostats'. The musculature therefore provides both the force and support for movement. Connective tissue fibres may aid in providing support and may also serve for elastic energy storage.  相似文献   

14.
Mechanical forces play a role in the development and evolution of extracellular matrices (ECMs) found in connective tissue. Gravitational forces acting on mammalian tissues increase the net muscle forces required for movement of vertebrates. As body mass increases during development, musculoskeletal tissues and other ECMs are able to adapt their size to meet the increased mechanical requirements. However, the control mechanisms that allow for rapid growth in tissue size during development are altered during maturation and aging. The purpose of this mini-review is to examine the relationship between mechanical loading and cellular events that are associated with downregulation of mechanochemical transduction, which appears to contribute to aging of connective tissue. These changes result from decreases in growth factor and hormone levels, as well as decreased activation of the phosphorelay system that controls cell division, gene expression, and protein synthesis. Studies pertaining to the interactions among mechanical forces, growth factors, hormones, and their receptors will better define the relationship between mechanochemical transduction processes and cellular behavior in aging tissues.  相似文献   

15.
The histology of cervical ribs of Sauropoda reveals a primary bone tissue, which largely consists of longitudinally oriented mineralized collagen fibres, essentially the same tissue as found in ossified tendons. The absence of regular periosteal bone and the dominance of longitudinal fibres contradict the ventral bracing hypothesis (VBH) postulated for sauropod necks. The VBH predicts histologically primary periosteal bone with fibres oriented perpendicular to the rib long axis, indicative of connective tissue between overlapping hyperelongated cervical ribs. The transformation of the cervical ribs into ossified tendons makes the neck more flexible and implies that tension forces acted mainly along the length of the neck. This is contrary to the VBH, which requires compressive forces along the neck. Tension forces would allow important neck muscles to shift back to the trunk region, making the neck much lighter.  相似文献   

16.
Acute effects of intramuscular aponeurotomy on muscle force and geometry as a function to muscle length were studied in rat m. gastrocnemius medialis (GM). Acutely after aponeurotomy, activation of the muscle at increasing lengths (acute trajectory) showed a spontaneous and progressive but patial tearing of the connective tissue interface between the fibres inserting directly proximally and distally to the location of the section. After this the muscle consisted morphologically of a stable proximal and a distal part (post-aponeurotomy). Post-aponeurotomy mean active sarcomere length within fibres of the proximal part was shown to be unaffected. In contrast, mean sarcomere length within the distal part was reduced substantially after aponeurotomy. However active sarcomeres in the distal part were still attaining higher lengths with increasing muscle lengths (p<0.005), indicating myofascial force transmission through the intact part of the connective tissue interface of the muscle parts. Post-aponeurotomy optimum muscle force was reduced substantially to less than 45% of pre-aponeurotomy values. During the acute trajectory the muscle yielded approximately 20% higher forces than post-aponeurotomy, indicating that myofascial force transmission was related to the area of connective tissue interface. It is concluded that after aponeurotomy of the proximal aponeurosis of rat GM, fibres without direct myotendinous connection to the origin of the muscle are still able to contribute to muscle force. As the magnitude of reduction in muscle force can only be explained partially by the spontaneous rupture of the connective tissue interface between proximal and distal muscle part, other factors causing a decrease of muscle force are present. Clinical implication of acute effects of intramuscular aponeurotomy are discussed.  相似文献   

17.
During Caenorhabditis elegans development, the process of epidermal elongation converts the bean-shaped embryo into the long thin shape of the larval worm. Epidermal elongation results from changes in the shape of epidermal cells, which in turn result from changes in the epidermal cytoskeleton, the extracellular matrix, and in cell-matrix adhesion junctions. Here, we review the roles of cytoskeletal filament systems in epidermal cell shape change during elongation. Genetic and cell biological analyses have established that all three major cytoskeletal filament systems (actin microfilaments, microtubules, and intermediate filaments (IFs)) play distinct and essential roles in epidermal cell shape change. Recent work has also highlighted the importance of communication between these systems for their integrated function in epidermal elongation. Epidermal cells undergo reciprocal interactions with underlying muscle cells, which regulate the position and function of IF-containing cell-matrix adhesion structures within the epidermis. Elongation thus exemplifies the reciprocal tissue interactions of organogenesis.  相似文献   

18.
Although the shortening of smooth muscle at physiological lengths is dominated by an interaction between external forces (loads) and internal forces, at very short lengths, internal forces appear to dominate the mechanical behavior of the active tissue. We tested the hypothesis that, under conditions of extreme shortening and low external force, the mechanical behavior of isolated canine tracheal smooth muscle tissue can be understood as a structure in which the force borne and exerted by the cross bridge and myofilament array is opposed by radially disposed connective tissue in the presence of an incompressible fluid matrix (cellular and extracellular). Strips of electrically stimulated tracheal muscle were allowed to shorten maximally under very low afterload, and large longitudinal sinusoidal vibrations (34 Hz, 1 s in duration, and up to 50% of the muscle length before vibration) were applied to highly shortened (active) tissue strips to produce reversible cross-bridge detachment. During the vibration, peak muscle force fell exponentially with successive forced elongations. After the episode, the muscle either extended itself or exerted a force against the tension transducer, depending on external conditions. The magnitude of this effect was proportional to the prior muscle stiffness and the amplitude of the vibration, indicating a recoil of strained connective tissue elements no longer opposed by cross-bridge forces. This behavior suggests that mechanical behavior at short lengths is dominated by tissue forces within a tensegrity-like structure made up of connective tissue, other extracellular matrix components, and active contractile elements.  相似文献   

19.
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle–muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.  相似文献   

20.
In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号