首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-lipoxygenase (EC 1.13.11.12) oxidizes polyunsaturated fatty acids by molecular oxygen. The enzyme acts in close contact with the cell membranes, which main components are ionic and non-ionic lipids. In order to investigate the kinetic parameters of 5-lipoxygenase reaction in vitro, extremely hydrophobic fatty acid substrate (linoleic acid) should be solubilized in the reaction mixture. We used Lubrol PX ("Sigma" Chem. Co), as a non-ionic detergent consisted of oligoethylene glycol and fatty alcohol. Linoleic acid and Lubrol PX formed mixed micelles thus solubilizing the fatty acid substrate in a buffer with appropriate pH. We have studied the sizes and shapes of mixed micelles Lubrol PX/linoleic acid (aggregates type 1) and Lubrol PX/linoleic acid/SDS (aggregates type 2; SDS was an effective activator of potato tuber 5-lipoxygenase) by means of gel-filtration and laser light scattering techniques. The parameters under investigation were molecular weights, Stocks radii and shapes of the mixed micelles. The average molecular weights and Stocks radii of the mixed micelles type 1 determined by mean of gel-filtration on Sephadex G-200 were 95,142 +/- 5184 Da and 3.45 +/- 0.11 nm, respectively. The same parameters for the mixed micelles type 2 were 73,694 +/- 893 Da and 3.02 +/- 0.02 nm, respectively. The strong similarity in physicochemical parameters for both types of mixed micelles indicated that SDS did not influence the size and shape of mixed micelles of Lubrol PX and linoleic acid. The activatory action of SDS on potato tuber lipoxygenase may be a result of electrostatic effect or direct participation of SDS in enzymatic catalysis. The laser light scattering technique allowed to determine two main fraction of particles in type 1 system with hydrodynamic diameters 2.6 and 5.7 nm and relative contribution to light scattering 13 and 87%, respectively. The particles with d = 5.7 nm were interpreted as the mixed micelles. The particles with d = 2.6 nm were interpreted as isolated molecules of Lubrol PX, linoleic acid and (or) their premicellar aggregates. The data obtained are to be used in creation of reliable physical and mathematical models of 5-lipoxygenase.  相似文献   

2.
12-Lipoxygenase from porcine leukocytes was partially purified by using of DEAE-Toyopearl chromatography (pH 7.5). Phosphatidylcholine and Phosphatidylinositol in reaction mixtures with mixed micelles Lubrol PX/linoleic acid inhibited the enzyme. The pH-optimum of lipoxygenase reaction in presence of phospholipids shifted into alkaline region. In the absence of phospholipids 3 additional substrate molecules bound with enzyme-substrate complex. In the presence of either phosphatidylcholine of phosphatidylinositol up to 2 substrate molecules bound with enzyme-substrate complex. The phospholipids competed with linoleic acid for one of the enzyme binding centers. A kinetic scheme of 12-lipoxygenase reaction has been proposed: Phosphatidylinositol lowered the values of Ks and Kns of the reaction of linoleic acid oxidation by 12-lipoxygenase, while phosphatidylcholine had opposite effect on these parameters. We suppose that phospholipids can regulate 12-lipoxygenase activity via control of the enzyme affinity to the substrate (polyunsaturated fatty acid).  相似文献   

3.
Influence of anionogenic phospholipid of phosphatidic acid (PA) on oxidation of linoleic acid by 5-lipoxygenase (5-LO) from Solanum tuberosum was studied. The influence of PA was studied in micellar system which consisted of mixed micelles of linolenic acid (LK), Lubrol PX and different quantity of enzyme effector PA. The reaction was initiated by addition of 5-LO. It was established that 5-LO had two pHopt. in the presence of 50 microM phosphatidic acid: pH 5.0 and 6.9. In concentration of 50 microM PA was able to activate 5-LO 15 times at pH 5.0. The reaction maximum velocity (Vmax) coincided with Vmax of lipoxygenase reaction without the effector at pH 6.9 under such conditions. It was found that 30-50 microM phospholipid in the reaction mixture decreased the concentration of half saturation by the substrate by 43-67%. The enzyme demonstrated positive cooperation in respect of the substrate, the reaction is described by the Hill equation. Hill coefficient value (h) of the substrate was 3.34 +/- 0.22 (pH 6.9) and 5.61 +/- 0.88 (pH 5.0), that is with the change of pH to acidic region the number of substrate molecules increased and they could interact with the enzyme molecule. In case of substrate insufficiency the enzyme demonstrated positive cooperation of PA, it added from 4 to 3 effectors' molecules at pH 5.0, that is the phospholipid acted as the allosteric regulator of 5-LO. A comparative analysis of the influence of 4-hydroxy-TEMPO displayed, that the level of nonenzymatic processes in the case of physiological pH values was lower by 15-50% in the presence of PA in the range of 30-80 microM than without the effector.  相似文献   

4.
Potato 5-lipoxygenase. Kinetics of linoleic acid oxidation   总被引:1,自引:0,他引:1  
The role of main factors influencing the rate of potato 5-lipoxygenase oxidation of linoleic acid was investigated. It was found that nonionic detergent lubrol PX inhibited the potato lipoxygenase. Optimal pH for the linoleic acid oxidation was 6.3 temperature--45 degrees C and substrate concentration--3 x 10(-4) M (if lubrol PX was 0.02%). It was shown that potato 5-lipoxygenase was allosteric enzyme which possessed positive cooperativity for linoleic acid. The Hill coefficient was calculated (n = 1.40 +/- 0.15) with S0.5 = 75 +/- 10 microM.  相似文献   

5.
A sensitive assay for 5 alpha-reductase was introduced which is capable of detecting at least 0.2 U of activity per sample. The assay was used in developing a method for the solubilization of human prostatic 5 alpha-reductase. Homogenisation conditions were devised under which 95% of the total prostatic 5 alpha-reductase was released into the microsomal fraction. A combination of 0.1 M sodium citrate, 0.1 M KCl, 20% (v/v) glycerol, 0.5 mM NADPH and 1 microM testosterone was found to stabilise 5 alpha-reductase in the presence of detergents. The effect of the presence of low concentrations of detergents in the assay on the activity of 5 alpha-reductase was studied. Triton X-100, Lubrol PX and Nonidet P-40, caused a concentration-dependent inhibition of activity. The ability of several detergents (Triton X-100 MEGA-9, Tween 20, Tween 80, digitonin, Lubrol PX and Nonidet P-40) to solubilise 5 alpha-reductase was studied. All detergents caused a concentration-dependent solubilization of 5 alpha-reductase. Significant amounts of active solubilized enzyme were recovered only with Lubrol PX at concentrations less than 1.1 mg/ml. Seventy percent of the 5 alpha-reductase was solubilized in an active form by extracting the membranes 3 times with 0.8 mg/ml Lubrol PX.  相似文献   

6.
We found that (R,S)-2-hydroxy-2-trifluoromethyl-trans-n-octadec-4-enoic acid (HTFOA) is a powerful activator of 5-lipoxygenase from potato tubers. The degree of activation of the enzyme is proportional to the HTFOA concentration and is a maximum at about 0.1 mM independently of initial substrate concentration (25 microM or 0.1 mM). At greater concentrations of HTFOA, enzyme inhibition takes place. Enzyme activation is inversely proportional to the substrate (linoleic acid) concentration. The results may be explained by assuming that a regulatory center exists in the enzyme molecule, which shows affinity to both substances: activator and linoleic acid.  相似文献   

7.
In animal cells arachidonic acid is metabolized via the 5-, 12- and 15-lipoxygenase pathways. The kinetic mechanism of action of plant (soya) and animal (reticulocyte) 15-lipoxygenases is now well established. 5-Lipoxygenase possesses, in all probability, the most complex mechanism of activity regulation. At present several effectors of neutrophil 5-lipoxygenase, both cytosolic and membrane-bound ones, have been identified. The molecular and kinetic mechanisms of action of the enzyme are still open to question. A kinetic scheme of regulation of synthesis of arachidonic acid 5-lipoxygenase metabolites which does not exclude the presence of two binding sites on the enzyme molecule, is proposed. Within the framework of this kinetic scheme the enzyme activator complex may be the active form of the enzyme. There is evidence that the curve for the time dependence of 5-HETE accumulation in neutrophils stimulated by the Ca2+ ionophore A23187 has a maximum, while the corresponding curve for the LTB4 accumulation is a curve with saturation. It was shown that an increase in the concentration of exogenous arachidonate induces the synthesis of 5-HETE, whereas the concentration of LTB4 remains practically unchanged. The results of mathematical analysis of the above kinetic scheme and a comparison of experimental and calculated values suggest that the reaction effector, Ca2+, plays a crucial regulatory role in the observed kinetic dependencies reflecting the formation of two sequential products of 5-lipoxygenase oxidation of arachidonate. In this way Ca2+ strongly influences the first step of the reaction, i.e., 5-HETE formation; its effect on the second reaction step (5-HETE conversion into LTA4) is far less apparent.  相似文献   

8.
1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in specific ratios may be useful in the purification of adenylate cyclase and other intrinsic membrane proteins.  相似文献   

9.
The purification of gamma-glutamyltransferase ((gamma-glutamyl)-peptide: amino acid gamma-glutamyltransferase, EC 2.3.2.2) from normal human liver is described. The procedure includes solubilization of enzyme from membranes using deoxycholate and Lubrol W, treatment with acetone and butanol, and affinity chromatography on immobilized concanavalin A. Treatment with papain was used to release the enzyme from aggregates of lipid and protein, prior to further purification. On overall purification of 9400 was achieved and analytical polyacrylamide gel electrophoresis indicated that the final product was homogeneous, and had a molecular weight of 110 000. Two subunits were identified on dodecyl sulfate gel electrophoresis with estimated molecular weights of 47 000 and 22 000. The kinetic properties studied for the purified enzyme were similar to those found for partially purified (not papain-treated) enzyme, and resembled those of serum gamma-glutamyltransferase. The true KM values for the liver enzyme were estimated to 0.81 mM for gamma-glutamyl-p-nitroanilide and to 12.4 mM for glycyl-glycine.  相似文献   

10.
Cloned 15-lipoxygenase has been expressed for the first time in eukaryotic and prokaryotic cells. Transfection of osteosarcoma cells with a mammalian expression plasmid containing the cDNA for human reticulocyte 15-lipoxygenase resulted in cell lines that were capable of oxidizing body arachidonic acid and linoleic acid. The lipoxygenase metabolites were identified by reverse-phase and straight-phase high pressure liquid chromatography, ultraviolet spectroscopy, and direct mass spectrometry, verifying that the cDNA for 15-lipoxygenase encodes an enzyme with authentic 15-lipoxygenase activity. Incubation of the transformed cells with arachidonic acid generated 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE in a ratio of 8.6 to 1, demonstrating that 15-lipoxygenase can also perform 12-lipoxygenation. Lesser amounts of 15-keto-ETE, four isomers of 8,15-diHETE, and one isomer of 14,15-diHETE were observed. Incubation with linoleic acid generated predominantly 13-hydroxy linoleic acid. The reaction was inhibited by eicosatetraynoic acid but not by indomethacin. Antibodies to a peptide corresponding to a unique region of the predicted amino acid sequence were generated and shown to react with one major band of 70 kDa on immunoblots of human leukocyte 15-lipoxygenase. To obtain antibodies to the full length enzyme, the cDNA was subcloned into a bacterial expression vector and was expressed as a fusion with the CheY protein. The overexpressed protein was readily purified from bacteria and was shown to be immunoreactive to the peptide-derived antibody. Antibodies raised to this recombinant enzyme did not cross-react with human leukocyte 5-lipoxygenase but did identify 15-lipoxygenase in rabbit reticulocytes, human leukocytes, and tracheal epithelial cells, suggesting that the 15-lipoxygenases from these different cell types are structurally related.  相似文献   

11.
We have studied the aerobic oxidation of linoleyl alcohol (LAL) by potato tuber lipoxygenase in the presence of 0.02% (w/v) non-ionic detergent Lubrol PX (and its analog C12E10) and 0.1 mM sodium dodecyl sulfate to investigate the role of carboxylic group in substrate binding. While the enzyme displayed a comparable affinity toward LA and LAL, the rate of LAL oxidation was approximately one-fourth of that of linoleic acid. The pH-profile of the reaction suggests that the rate of LAL oxidation is controlled by two ionizable groups with pKavalues of 5.3 and 7.5, with optimal pH being 6.4±0.1. Since LAL is not ionizable at this pH, we conclude that the rate of the reaction is controlled by two ionogenic groups of the enzyme. The primary dioxygenation product(s) of LAL had a maximal absorbance at 233±1 nm. The products have been isolated, catalytically hydrogenated with H2over Pd on carbon, and analyzed by GC-MS. Two major equimolar products were found to be 9- and 13-hydroxystearyl alcohols, indicating that 9- and 13-hydroperoxylinoleyl alcohols are the primary dioxygenation products. Based on these results we propose that the carboxyl group of polyunsaturated fatty acid may not be involved in substrate binding of potato tuber lipoxygenase.  相似文献   

12.
The role of allosteric effector--sodium dodecyl sulfate (SDS) in the lipoxygenase catalysis in micelle system has been studied. The effect of the stable hydrophobic bis-nitroxides, blocking the free radical transformation, on the oxidation of linoleic acid or linoleic alcohol by 5-lipoxygenase from potato tuber has been investigated. The inhibiting effect of nitroxide compounds on oxidation of linoleic acid or linoleic alcohol by 5-lipoxygenase depends on SDS concentration. The inhibition percentage is determined by the substrate nature and presence of allosteric effector. The presence of SDS did not lead to an appreciable change in the pKa values of ionogenic enzyme groups. The effect of SDS and micellar system on thermodynamic parameters for thermoinactivation of 5-lipoxygenase was studied. It was found that thermoinactivation rate constants and activation energy of enzyme thermoinactivation were increased in the presence of SDS. It is suggested that interaction of 5-lipoxygenase and allosteric effector--SDS intensifies the dissociation of radical intermediates from the active site of the enzyme. These findings are of physiological significance in the light of the lipoxygenase involvement in the membrane lipid peroxidation.  相似文献   

13.
1. Adenylate cyclase of Saccharomyces cerevisiae was sedimented from mechanically disintegrated preparations of yeast over an unusually wide range of centrifugal forces. 2. The enzyme was readily solubilized by Ficoll and by Lubrol PX. Lubrol caused a 2-fold activation. 3. Both particle-bound and Lubrol-solubilized enzyme had an apparent Km for ATP of 1.6 mM in the presence of 0.4 mM-cyclic AMP and 5 mM-MnCl2 at pH 6.2 and 30 degrees C. 4. The Lubrol-solubilized enzyme behaved on gel filtration as a monodisperse protein with an apparent mol.wt. of about 450000.  相似文献   

14.
The rate of linoleic acid peroxidation catalysed by soybean lipoxygenase I was studied as a function of the hydration degree of aerosol OT (bis(2-ethylhexyl) sulfosuccinate sodium salt) reversed micelles in octane. Lipoxygenase reaction parameters for the micelle-bound substrate were spectrophotometrically determined. The linoleic acid distribution between the micelles and octane was detected by the sedimentation method, with the concentration of linoleic acid in supernatant after settling of micelles (i.e. the concentration of free linoleic acid) being estimated by the enzymatic method. The apparent constant of linoleic acid distribution (the ratio of the bound and free substrate concentrations) was enhanced with increasing hydration of reversed micelles. The dependence of the enzymatic reaction rate on the bound substrate concentration obeyed the empiric Hill equation. The Hill coefficient remained practically constant (h = 1.34) as the hydration degree changed. Parameters of the lipoxygenase reaction, enzyme reaction limiting rate V and semi-saturation substrate concentration [S]0.5 increased with increasing degree of hydration and reached the optimum at [H2O]/[AOT] approximately 30, where dimensions of the micellar internal cavity coincided with those of the enzyme molecule. Some aspects of kinetic behavior of membrane-bound enzymes participating in chemical transformation of non-polar compounds dispersed in lipid phase are discussed.  相似文献   

15.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

16.
1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.  相似文献   

17.
A 43,000 molecular-weight, glucose-inducible, organic acid-repressible protein (OprB) was identified in the outer membrane of Pseudomonas putida. OprB was surface expressed in whole cells, had a high beta-sheet content, and was heat modifiable, as demonstrated by 125I-labeling, circular dichroism spectroscopy, and mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. OprB was extracted from outer membrane preparations by using 2% Lubrol PX with 10 mM EDTA and purified by DEAE-Sephacel ion exchange chromatography following ammonium sulfate precipitation. Reconstitution experiments with black lipid membranes showed that OprB formed small, cation-selective pores which bound glucose (KS = 110 mM) and other carbohydrates. However, the binding site of OprB appeared to be distinct from that of the maltodextrin-specific porin LamB from Escherichia coli.  相似文献   

18.
Adenylate cyclase in liver membranes was solubilized with Lubrol PX and partially purified by gel filtration. The partially purified enzyme was susceptible to activation by guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Studies on the binding of [3H]Gpp(NH)p to various fractions eluted from the gels revealed that an upper limit of 1% of the Gpp(NH)p binding sites is associated with adenylate cyclase activity stimulated by the nucleotide. The glucagon receptor, pretagged with 125I-glucagon in the membranes, solubilized with Lubrol PX, and fractionated on the same gel columns, eluted in a peak fraction that overlaps with, but is separate from, adenylate cyclase in its Gpp(NH)p-stimulated form. Addition of GTP to the solubilized glucagon-receptor complex caused complete dissociation of the complex, as has been shown with the membrane-bound form of the complex. Since the GTP-sensitive form of the glucagon receptor complex separates from the Gpp(NH)p-sensitive form of adenylate cyclase, it is concluded that the receptor and the enzyme are separate molecules, each associated with a distinct nucleotide regulatory site or component. These findings are discussed in terms of the possible structure of the hormone-sensitive state of adenylate cyclase.  相似文献   

19.
Phospholipase C catalyzed hydrolysis of dimyristoyl phosphatidylcholine (DMPC) in phospholipid-bile salt mixed micelles was studied with particular attention on the relationship between interfacial enzyme activity and the physicochemical properties of substrate aggregates. Steady state kinetics is observed and it is argued that conditions for steady state exist because the enzyme encounters a steady supply of substrate by hopping between micelles at a rate faster than the chemical reaction rate. An existing kinetic model is reformulated to a more usable form. This presents a new approach to treating the kinetic data and allows extraction of the kinetic parameters of the model from the activity dependence on micellar lipid substrate surface concentration. The kinetic parameters were found to depend on the physicochemical properties of substrate aggregates, but remain constant over a range of lipid and bile salt concentrations. The substrate aggregates were characterized by time-resolved fluorescence quenching (TRFQ). The activity values and the micelle sizes group into two sets: (i) larger micelles for bile salt/lipid 5 with lower activity and longer steady state ( approximately 10 min). At least two sets of parameters, for bile salt/lipid 5, characterize the kinetics. Higher enzyme-micelle dissociation constant and lower catalytic rate are found for the group of smaller micelles. An explanation supporting our finding is that as micelles become smaller the overlap area for enzyme-micelle binding decreases, leading to weaker binding. Consequently the enzyme dissociation constant increases. Extension of the present approach to other phospholipases and substrates to establish its generality and correlation between micelle size and the catalytic rate are areas for future investigations.  相似文献   

20.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号