首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-infrared spectroscopy (NIRS) was utilized to gain insights into the kinetics of oxidative metabolism during exercise transitions. Ten untrained young men were tested on a cycle ergometer during transitions from unloaded pedaling to 5 min of constant-load exercise below (VT) the ventilatory threshold. Vastus lateralis oxygenation was determined by NIRS, and pulmonary O2 uptake (Vo --> Vo2) was determined breath-by-breath. Changes in deoxygenated hemoglobin + myoglobin concentration Delta[deoxy(Hb + Mb)] were taken as a muscle oxygenation index. At the transition, [Delta[deoxy(Hb + Mb)]] was unmodified [time delay (TD)] for 8.9 +/- 0.5 s at VT (both significantly different from 0) and then increased, following a monoexponential function [time constant (tau) = 8.5 +/- 0.9 s for VT]. For >VT a slow component of Delta[deoxy(Hb + Mb)] on-kinetics was observed in 9 of 10 subjects after 75.0 +/- 14.0 s of exercise. A significant correlation was described between the mean response time (MRT = TD + tau) of the primary component of Delta[deoxy(Hb + Mb)] on-kinetics and the tau of the primary component of the pulmonary Vo2 on-kinetics. The constant muscle oxygenation during the initial phase of the on-transition indicates a tight coupling between increases in O2 delivery and O2 utilization. The lack of a drop in muscle oxygenation at the transition suggests adequacy of O2 availability in relation to needs.  相似文献   

2.
The near-infrared spectroscopy (NIRS) signal (deoxyhemoglobin concentration; [HHb]) reflects the dynamic balance between muscle capillary blood flow (Q(cap)) and muscle O(2) uptake (Vo(2)(m)) in the microcirculation. The purposes of the present study were to estimate the time course of Q(cap) from the kinetics of the primary component of pulmonary O(2) uptake (Vo(2)(p)) and [HHb] throughout exercise, and compare the Q(cap) kinetics with the Vo(2)(p) kinetics. Nine subjects performed moderate- (M; below lactate threshold) and heavy-intensity (H, above lactate threshold) constant-work-rate tests. Vo(2)(p) (l/min) was measured breath by breath, and [HHb] (muM) was measured by NIRS during the tests. The time course of Q(cap) was estimated from the rearrangement of the Fick equation [Q(cap) = Vo(2)(m)/(a-v)O(2), where (a-v)O(2) is arteriovenous O(2) difference] using Vo(2)(p) (primary component) and [HHb] as proxies of Vo(2)(m) and (a-v)O(2), respectively. The kinetics of [HHb] [time constant (tau) + time delay [HHb]; M = 17.8 +/- 2.3 s and H = 13.7 +/- 1.4 s] were significantly (P < 0.001) faster than the kinetics of Vo(2) [tau of primary component (tau(P)); M = 25.5 +/- 8.8 s and H = 25.6 +/- 7.2 s] and Q(cap) [mean response time (MRT); M = 25.4 +/- 9.1 s and H = 25.7 +/- 7.7 s]. However, there was no significant difference between MRT of Q(cap) and tau(P)-Vo(2) for both intensities (P = 0.99), and these parameters were significantly correlated (M and H; r = 0.99; P < 0.001). In conclusion, we have proposed a new method to noninvasively approximate Q(cap) kinetics in humans during exercise. The resulting overall Q(cap) kinetics appeared to be tightly coupled to the temporal profile of Vo(2)(m).  相似文献   

3.
The aim of this study was to examine the effects of assuming constant reduced scattering coefficient (mu'(s)) on the muscle oxygenation response to incremental exercise and its recovery kinetics. Fifteen subjects (age: 24 +/- 5 yr) underwent incremental cycling exercise. Frequency domain near-infrared spectroscopy (NIRS) was used to estimate deoxyhemoglobin concentration {[deoxy(Hb+Mb)]} (where Mb is myoglobin), oxyhemoglobin concentration {[oxy(Hb+Mb)]}, total Hb concentration (Total[Hb+Mb]), and tissue O(2) saturation (Sti(O(2))), incorporating both continuous measurements of mu'(s) and assuming constant mu'(s). When measuring mu'(s), we observed significant changes in NIRS variables at peak work rate Delta[deoxy(Hb+Mb)] (15.0 +/- 7.8 microM), Delta[oxy(Hb+Mb)] (-4.8 +/- 5.8 microM), DeltaTotal[Hb+Mb] (10.9 +/- 8.4 microM), and DeltaSti(O(2))(-11.8 +/- 4.1%). Assuming constant mu'(s) resulted in greater (P < 0.01 vs. measured mu'(s)) changes in the NIRS variables at peak work rate, where Delta[deoxy(Hb+Mb)] = 24.5 +/- 15.6 microM, Delta[oxy(Hb+Mb)] = -9.7 +/- 8.2 microM, DeltaTotal[Hb+Mb] = 14.8 +/- 8.7 microM, and DeltaSti(O(2))= -18.7 +/- 8.4%. Regarding the recovery kinetics, the large 95% confidence intervals (CI) for the difference between those determine measuring mu'(s) and assuming constant mu'(s) suggested poor agreement between methods. For the mean response time (MRT), which describes the overall kinetics, the 95% confidence intervals were MRT - [deoxy(Hb+Mb)] = 26.7 s; MRT - [oxy(Hb+Mb)] = 11.8 s, and MRT - Sti(O(2))= 11.8 s. In conclusion, mu'(s) changed from light to peak exercise. Furthermore, assuming a constant mu'(s) led to an overestimation of the changes in NIRS variables during exercise and distortion of the recovery kinetics.  相似文献   

4.
The effect of prior exercise on pulmonary O(2) uptake (Vo(2)(p)), leg blood flow (LBF), and muscle deoxygenation at the onset of heavy-intensity alternate-leg knee-extension (KE) exercise was examined. Seven subjects [27 (5) yr; mean (SD)] performed step transitions (n = 3; 8 min) from passive KE following no warm-up (HVY 1) and heavy-intensity (Delta50%, 8 min; HVY 2) KE exercise. Vo(2)(p) was measured breath-by-breath; LBF was measured by Doppler ultrasound at the femoral artery; and oxy (O(2)Hb)-, deoxy (HHb)-, and total (Hb(tot)) hemoglobin/myoglobin of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). Phase 2 Vo(2)(p), LBF, and HHb data were fit with a monoexponential model. The time delay (TD) from exercise onset to an increase in HHb was also determined and an HHb effective time constant (HHb - MRT = TD + tau) was calculated. Prior heavy-intensity exercise resulted in a speeding (P < 0.05) of phase 2 Vo(2)(p) kinetics [HVY 1: 42 s (6); HVY 2: 37 s (8)], with no change in the phase 2 amplitude [HVY 1: 1.43 l/min (0.21); HVY 2: 1.48 l/min (0.21)] or amplitude of the Vo(2)(p) slow component [HVY 1: 0.18 l/min (0.08); HVY 2: 0.18 l/min (0.09)]. O(2)Hb and Hb(tot) were elevated throughout the on-transient following prior heavy-intensity exercise. The tauLBF [HVY 1: 39 s (7); HVY 2: 47 s (21); P = 0.48] and HHb-MRT [HVY 1: 23 s (4); HVY 2: 21 s (7); P = 0.63] were unaffected by prior exercise. However, the increase in HHb [HVY 1: 21 microM (10); HVY 2: 25 microM (10); P < 0.001] and the HHb-to-Vo(2)(p) ratio [(HHb/Vo(2)(p)) HVY 1: 14 microM x l(-1) x min(-1) (6); HVY 2: 17 microM x l(-1) x min(-1) (5); P < 0.05] were greater following prior heavy-intensity exercise. These results suggest that the speeding of phase 2 tauVo(2)(p) was the result of both elevated local O(2) availability and greater O(2) extraction evidenced by the greater HHb amplitude and HHb/Vo(2)(p) ratio following prior heavy-intensity exercise.  相似文献   

5.
To test the hypothesis that, during exercise, substantial heterogeneity of muscle hemoglobin and myoglobin deoxygenation [deoxy(Hb + Mb)] dynamics exists and to determine whether such heterogeneity is associated with the speed of pulmonary O(2) uptake (pVo(2)) kinetics, we adapted multi-optical fibers near-infrared spectroscopy (NIRS) to characterize the spatial distribution of muscle deoxygenation kinetics at exercise onset. Seven subjects performed cycle exercise transitions from unloaded to moderate [GET) work rates and the relative changes in deoxy(Hb + Mb), at 10 sites in the quadriceps, were sampled by NIRS. At exercise onset, the time delays in muscle deoxy(Hb + Mb) were spatially inhomogeneous [intersite coefficient of variation (CV), 3~56% for GET]. The primary component kinetics (time constant) of muscle deoxy(Hb + Mb) reflecting increased O(2) extraction were also spatially inhomogeneous (intersite CV, 6~48% for GET) and faster (P < 0.05) than those of phase 2 pVo(2). However, the degree of dynamic intersite heterogeneity in muscle deoxygenation did not correlate significantly with phase 2 pVo(2) kinetics. In conclusion, the dynamics of quadriceps microvascular oxygenation demonstrates substantial spatial heterogeneity that must arise from disparities in the relative kinetics of Vo(2) and O(2) delivery increase across the regions sampled.  相似文献   

6.
We examined peak and reserve cardiovascular function and skeletal muscle oxygenation during unilateral knee extension (ULKE) exercise in five heart transplant recipients (HTR, mean +/- SE; age: 53 +/- 3 years; years posttransplant: 6 +/- 4) and five age- and body mass-matched healthy controls (CON). Pulmonary oxygen uptake (Vo(2)(p)), heart rate (HR), stroke volume (SV), cardiac output (Q), and skeletal muscle deoxygenation (HHb) kinetics were assessed during moderate-intensity ULKE exercise. Peak exercise and reserve Vo(2)(p), Q, and systemic arterial-venous oxygen difference (a-vO(2diff)) were 23-52% lower (P < 0.05) in HTR. The reduced Q and a-vO(2diff) reserves were associated with lower HR and HHb reserves, respectively. The phase II Vo(2)(p) time delay was greater (HTR: 38 +/- 2 vs. CON: 25 +/- 1 s, P < 0.05), while time constants for phase II Vo(2)(p) (HTR: 54 +/- 8 vs. CON: 31 +/- 3 s), Q (HTR: 66 +/- 8 vs. CON: 28 +/- 4 s), and HHb (HTR: 27 +/- 5 vs. CON: 13 +/- 3 s) were significantly slower in HTR. The HR half-time was slower in HTR (113 +/- 21 s) vs. CON (21 +/- 2 s, P < 0.05); however, no significant difference was found between groups for SV kinetics (HTR: 39 +/- 8 s vs. CON 31 +/- 6 s). The lower peak Vo(2)(p) and prolonged Vo(2)(p) kinetics in HTR were secondary to impairments in both cardiovascular and skeletal muscle function that result in reduced oxygen delivery and utilization by the active muscles.  相似文献   

7.
The intensity of exercise above which oxygen uptake (Vo2) does not account for all of the required energy to perform work has been associated with lactate accumulation in the blood (lactate threshold, LT) and elevated carbon dioxide output (gas exchange threshold). An increase in hydrogen ion concentration ([H+]) is approximately concurrent with elevation of blood lactate and CO2 output during exercise. Near-infrared spectra (NIRS) and invasive interstitial fluid pH (pHm) were measured in the flexor digitorum profundus during handgrip exercise to produce a mathematical model relating the two measures with an estimated error of 0.035 pH units. This NIRS pHm model was subsequently applied to spectra collected from the vastus lateralis of 10 subjects performing an incremental-intensity cycle protocol. Muscle oxygen saturation (SmO2) was also calculated from spectra. We hypothesized that a H+ threshold could be identified for these subjects and that it would be different from but correlated with the LT. Lactate, gas exchange, SmO2, and H+ thresholds were determined as a function of Vo2 using bilinear regression. LT was significantly different from both the gas exchange threshold (Delta = 0.27 +/- 0.29 l/min) and H+ threshold (Delta = 0.29 +/- 0.23 l/min), but the gas exchange threshold was not significantly different from the H+ threshold (Delta = 0.00 +/- 0.38 l/min). The H+ threshold was strongly correlated with LT (R2 = 0.95) and the gas exchange threshold (R2 = 0.85). This initial study demonstrates the feasibility of noninvasive pHm estimations, the determination of H+ threshold, and the relationship between H+ and classical metabolic thresholds during incremental exercise.  相似文献   

8.
This study was carried out to determine whether hemodynamics in inactive forearm muscle during ramp leg cycling is affected from the ventilatory threshold (VT) and respiratory compensation point (RCP), at which the rate of increase in ventilation (VE) against power output begins to increase abruptly. Change in hemodynamics was evaluated by change in oxygenation index (difference between concentrations of oxygenated hemoglobin and deoxygenated hemoglobin, HbD) measured using near-infrared spectrometry (NIRS). Each subject (n=9) performed 4-min constant-work-rate leg cycling and subsequent ramp leg cycling at an increasing rate of 10 watts.min(-1) in power output. The work rates at VT, RCP and peak oxygen uptake (VO(2 peak)) were 107 +/- 11, 172 +/- 21 and 206 +/- 20 watts, respectively. The rates of increase in VE between 10-watt leg cycling, VT, RCP and VO(2 peak) were 0.19 +/- 0.03, 0.44 +/- 0.07 and 1.32 +/- 0.47 l.min(-1).watts(-1), respectively. In one subject, HbD started to decrease during ramp exercise from the VT, and the rate of decrease increased at a high intensity of exercise. In eight subjects, although no decrease in HbD from the VT was observed, HbD showed a sudden drop at a high intensity of exercise. The work rate at which HbD began to decrease at a high intensity of exercise was 174 +/- 23 watts. This work rate was not significantly different from that at the RCP and was significantly correlated with that at the RCP (r=0.72, P<0.05). The results suggest that the abrupt increase in VE from the RCP affects hemodynamics, resulting in a decrease in HbD in inactive forearm muscle.  相似文献   

9.
Phase 2 pulmonary O(2) uptake (Vo(2(p))) kinetics are slowed with aging. To examine the effect of aging on the adaptation of Vo(2(p)) and deoxygenation of the vastus lateralis muscle at the onset of moderate-intensity constant-load cycling exercise, young (Y) (n = 6; 25 +/- 3 yr) and older (O) (n = 6; 68 +/- 3 yr) adults performed repeated transitions from 20 W to work rates corresponding to moderate-intensity (80% estimated lactate threshold) exercise. Breath-by-breath Vo(2(p)) was measured by mass spectrometer and volume turbine. Deoxy (HHb)-, oxy-, and total Hb and/or myoglobin were determined by near-infrared spectroscopy (Hamamatsu NIRO-300). Vo(2(p)) data were filtered, interpolated to 1 s, and averaged to 5-s bins. HHb data were filtered and averaged to 5-s bins. Vo(2(p)) data were fit with a monoexponential model for phase 2, and HHb data were analyzed to determine the time delay from exercise onset to the start of an increase in HHb and thereafter were fit with a single-component exponential model. The phase 2 time constant for Vo(2(p)) was slower (P < 0.01) in O (Y: 26 +/- 7 s; O: 42 +/- 9 s), whereas the delay before an increase in HHb (Y: 12 +/- 2 s; O: 11 +/- 1 s) and the time constant for HHb after the time delay (Y: 13 +/- 10 s; O: 9 +/- 3 s) were similar in Y and O. However, the increase in HHb for a given increase in Vo(2(p)) (Y: 7 +/- 2 microM x l(-1) x min(-1); O: 13 +/- 4 microM x l(-1) x min(-1)) was greater (P < 0.01) in O compared with Y. The slower Vo(2(p)) kinetics in O compared with Y adults was accompanied by a slower increase of local muscle blood flow and O(2) delivery discerned from a faster and greater muscle deoxygenation relative to Vo(2(p)) in O.  相似文献   

10.
The volume of O(2) exchanged at the mouth during a breath (Vo(2,m)) is equal to that taken up by pulmonary capillaries (Vo(2,A)) only if lung O(2) stores are constant. The latter change if either end-expiratory lung volume (EELV), or alveolar O(2) fraction (Fa(O(2))) change. Measuring this requires breath-by-breath (BbB) measurement of absolute EELV, for which we used optoelectronic plethysmography combined with measurement of O(2) fraction at the mouth to measure Vo(2,A) = Vo(2,m) - (DeltaEELV x Fa(O(2)) + EELV x DeltaFa(O(2))), and divided by respiratory cycle time to obtain BbB O(2) consumption (Vo(2)) in seven healthy men during incremental exercise and recovery. To synchronize O(2) and volume signals, we measured gas transit time from mouthpiece to O(2) meter and compared Vo(2) measured during steady-state exercise by using expired gas collection with the mean BbB measurement over the same time period. In one subject, we adjusted the instrumental response time by 20-ms increments to maximize the agreement between the two Vo(2) measurements. We then applied the same total time delay (transit time plus instrumental delay = 660 ms) to all other subjects. The comparison of pooled data from all subjects revealed r(2) = 0.990, percent error = 0.039 +/- 1.61 SE, and slope = 1.02 +/- 0.015 (SE). During recovery, increases in EELV introduced systematic errors in Vo(2) if measured without taking DeltaEELV x Ca(O(2))+EELV x DeltaFa(O(2)) into account. We conclude that optoelectronic plethysmography can be used to measure BbB Vo(2) accurately when studying BbB gas exchange in conditions when EELV changes, as during on- and off-transients.  相似文献   

11.
The purpose of this research was to develop a technique for rapid measurement of O(2) uptake (Vo(2)) kinetics in single isolated skeletal muscle cells. Previous attempts to measure single cell Vo(2) have utilized polarographic-style electrodes, thereby mandating large fluid volumes and relatively poor sensitivity. Thus our laboratory has developed an approximately 100-microl, well-stirred chamber for the measurement of Vo(2) in isolated Xenopus laevis myocytes using a phosphorescence quenching technique [Ringer solution with 0.05 mM Pd-meso-tetra(4-carboxyphenyl)porphine] to monitor the fall in extracellular Po(2) (which is proportional to cellular Vo(2) within the sealed chamber). Vo(2) in single living myocytes dissected from Xenopus lumbrical muscles was measured from rest across a bout of repetitive tetanic contractions (0.33 Hz) and in response to a ramp protocol utilizing an increasing contraction frequency. In response to the square-wave contraction bout, the increase in Vo(2) to steady state (SS) was 16.7 +/- 1.3 ml x 100 g(-1) x min(-1) (range 13.0-21.9 ml x 100 g(-1) x min(-1); n = 6). The rise in Vo(2) at contractions onset (n = 6) was fit with a time delay (2.1 +/- 1.2 s, range 0.0-7.7 s) plus monoexponential rise to SS (time constant = 9.4 +/- 1.5 s, range 5.2-14.9 s). Furthermore, in two additional myocytes, Vo(2) increased progressively as contraction frequency increased (ramp protocol). This technique for measuring Vo(2) in isolated, single skeletal myocytes represents a novel and powerful investigative tool for gaining mechanistic insight into mitochondrial function and Vo(2) dynamics without potential complications of the circulation and other myocytes.  相似文献   

12.
We tested whether the kinetics of systemic O(2) delivery (QaO(2)) at exercise start was faster than that of lung O(2) uptake (Vo(2)), being dictated by that of cardiac output (Q), and whether changes in Q would explain the postulated rapid phase of the Vo(2) increase. Simultaneous determinations of beat-by-beat (BBB) Q and QaO(2), and breath-by-breath Vo(2) at the onset of constant load exercises at 50 and 100 W were obtained on six men (age 24.2 +/- 3.2 years, maximal aerobic power 333 +/- 61 W). Vo(2) was determined using Gr?nlund's algorithm. Q was computed from BBB stroke volume (Q(st), from arterial pulse pressure profiles) and heart rate (f(h), electrocardiograpy) and calibrated against a steady-state method. This, along with the time course of hemoglobin concentration and arterial O(2) saturation (infrared oximetry) allowed computation of BBB QaO(2). The Q, QaO(2) and Vo(2) kinetics were analyzed with single and double exponential models. f(h), Q(st), Q, and Vo(2) increased upon exercise onset to reach a new steady state. The kinetics of QaO(2) had the same time constants as that of Q. The latter was twofold faster than that of Vo(2). The Vo(2) kinetics were faster than previously reported for muscle phosphocreatine decrease. Within a two-phase model, because of the Fick equation, the amplitude of phase I Q changes fully explained the phase I of Vo(2) increase. We suggest that in unsteady states, lung Vo(2) is dissociated from muscle O(2) consumption. The two components of Q and QaO(2) kinetics may reflect vagal withdrawal and sympathetic activation.  相似文献   

13.
The purpose of this study was to examine the effects of exercise on extravascular lung water as it may relate to pulmonary gas exchange. Ten male humans underwent measures of maximal oxygen uptake (Vo2 max) in two conditions: normoxia (N) and normobaric hypoxia of 15% O2 (H). Lung density was measured by quantified MRI before and 48.0 +/- 7.4 and 100.7 +/- 15.1 min following 60 min of cycling exercise in N (intensity = 61.6 +/- 9.5% Vo2 max) and 55.5 +/- 9.8 and 104.3 +/- 9.1 min following 60 min cycling exercise in H (intensity = 65.4 +/- 7.1% hypoxic Vo2 max), where Vo2 max = 65.0 +/- 7.5 ml x kg(-1) x min(-1) (N) and 54.1 +/- 7.0 ml x kg(-1) x min(-1) (H). Two subjects demonstrated mild exercise-induced arterial hypoxemia (EIAH) [minimum arterial oxygen saturation (SaO2 min) = 94.5% and 93.8%], and seven subjects demonstrated moderate EIAH (SaO2 min = 91.4 +/- 1.1%) as measured noninvasively during the Vo2 max test in N. Mean lung densities, measured once preexercise and twice postexercise, were 0.177 +/- 0.019, 0.181 +/- 0.019, and 0.173 +/- 0.019 g/ml (N) and 0.178 +/- 0.021, 0.174 +/- 0.022, and 0.176 +/- 0.019 g/ml (H), respectively. No significant differences (P > 0.05) were found in lung density following exercise in either condition or between conditions. Transient interstitial pulmonary edema did not occur following sustained steady-state cycling exercise in N or H, indicating that transient edema does not result from pulmonary capillary leakage during sustained submaximal exercise.  相似文献   

14.
Patients with chronic obstructive pulmonary disease (COPD) have slowed pulmonary O(2) uptake (Vo(2)(p)) kinetics during exercise, which may stem from inadequate muscle O(2) delivery. However, it is currently unknown how COPD impacts the dynamic relationship between systemic and microvascular O(2) delivery to uptake during exercise. We tested the hypothesis that, along with slowed Vo(2)(p) kinetics, COPD patients have faster dynamics of muscle deoxygenation, but slower kinetics of cardiac output (Qt) following the onset of heavy-intensity exercise. We measured Vo(2)(p), Qt (impedance cardiography), and muscle deoxygenation (near-infrared spectroscopy) during heavy-intensity exercise performed to the limit of tolerance by 10 patients with moderate-to-severe COPD and 11 age-matched sedentary controls. Variables were analyzed by standard nonlinear regression equations. Time to exercise intolerance was significantly (P < 0.05) lower in patients and related to the kinetics of Vo(2)(p) (r = -0.70; P < 0.05). Compared with controls, COPD patients displayed slower kinetics of Vo(2)(p) (42 +/- 13 vs. 73 +/- 24 s) and Qt (67 +/- 11 vs. 96 +/- 32 s), and faster overall kinetics of muscle deoxy-Hb (19.9 +/- 2.4 vs. 16.5 +/- 3.4 s). Consequently, the time constant ratio of O(2) uptake to mean response time of deoxy-Hb concentration was significantly greater in patients, suggesting a slower kinetics of microvascular O(2) delivery. In conclusion, our data show that patients with moderate-to-severe COPD have impaired central and peripheral cardiovascular adjustments following the onset of heavy-intensity exercise. These cardiocirculatory disturbances negatively impact the dynamic matching of O(2) delivery and utilization and may contribute to the slower Vo(2)(p) kinetics compared with age-matched controls.  相似文献   

15.
Humans who lack availability of carbohydrate fuels may provide important models for the study of physiological control mechanisms. We compared seven patients who had unavailability of muscle glycogen and blood glucose as oxidative fuels due to muscle phosphofructokinase deficiency (PFKD) with five patients who had a selective defect in long-chain fatty acid oxidation due to carnitine palmitoyltransferase deficiency (CPTD) and with six healthy subjects. Peak cycle exercise work rate, peak O2 uptake (Vo2), and arteriovenous O2 difference were markedly lower (P less than 0.001) for PFKD patients (23 +/- 6 W, 14 +/- 2 ml.min-1.kg-1, and 7.1 +/- 0.5 ml/dl, respectively) than for CPTD patients (142 +/- 33 W, 31 +/- 4 ml.min-1.kg-1, and 15.0 +/- 0.8 ml/dl, respectively) or healthy subjects (171 +/- 17 W, 36 +/- 1 ml.min-1.kg-1, and 16.4 +/- 0.7 ml/dl, respectively). Peak cardiac output (Q) was similar (P less than 0.05) in all three groups, but the slope of increase in Q (l/min) on Vo2 (l/min) from rest to exercise (delta Q/ delta Vo2) was more than twofold greater (P less than 0.001) for PFKD patients (11.2 +/- 1.2) than for CPTD patients (4.6 +/- 0.6) and healthy subjects (4.6 +/- 0.2). Increasing availability of blood-borne oxidative substrates capable of metabolically bypassing the defect at phosphofructokinase (by fasting plus prolonged moderate exercise to increase plasma free fatty acids or by iv lactate infusion) increased peak work rate, Vo2, and arteriovenous O2 difference, lacked consistent effect on peak Q, and normalized delta Q/ delta Vo2 in PFKD patients. The results extend our previous observations in patients with a block in muscle glycogen but not blood glucose oxidation due to phosphorylase deficiency and imply that specific unavailability of muscle glycogen as an oxidizable fuel is primarily responsible for abnormal muscle oxidative metabolism and associated exercise intolerance and exaggerated delta Q/ delta Vo2 in muscle PFKD. The findings also endorse the concept that factors closely linked with muscle oxidative phosphorylation participate in regulating delta Q/ delta Vo2, likely via activation of metabolically sensitive muscle afferents.  相似文献   

16.
The conventional continuous wave near-infrared spectroscopy (CW-NIRS) has enabled identification of regional differences in muscle deoxygenation following onset of exercise. However, assumptions of constant optical factors (e.g., path length) used to convert the relative changes in CW-NIRS signal intensity to values of relative concentration, bring the validity of such measurements into question. Furthermore, to justify comparisons among sites and subjects, it is essential to correct the amplitude of deoxygenated hemoglobin plus myoglobin [deoxy(Hb+Mb)] for the adipose tissue thickness (ATT). We used two time-resolved NIRS systems to measure the distribution of the optical factors directly, thereby enabling the determination of the absolute concentrations of deoxy(Hb+Mb) simultaneously at the distal and proximal sites within the vastus lateralis (VL) and the rectus femoris muscles. Eight subjects performed cycle exercise transitions from unloaded to heavy work rates (>gas exchange threshold). Following exercise onset, the ATT-corrected amplitudes (A(p)), time delay (TD(p)), and time constant (τ(p)) of the primary component kinetics in muscle deoxy(Hb + Mb) were spatially heterogeneous (intersite coefficient of variation range for the subjects: 10-50 for A(p), 16-58 for TD(p), 14-108% for τ(p)). The absolute and relative amplitudes of the deoxy(Hb+Mb) responses were highly dependent on ATT, both within subjects and between measurement sites. The present results suggest that regional heterogeneity in the magnitude and temporal profile of muscle deoxygenation is a consequence of differential matching of O(2) delivery and O(2) utilization, not an artifact caused by changes in optical properties of the tissue during exercise or variability in the overlying adipose tissue.  相似文献   

17.
This study examined the effects of progressive exercise to fatigue in normoxia (N) on muscle sarcoplasmic reticulum (SR) Ca(2+) cycling and whether alterations in SR Ca(2+) cycling are related to the blunted peak mechanical power output (PO(peak)) and peak oxygen consumption (Vo(2 peak)) observed during progressive exercise in hypoxia (H). Nine untrained men (20.7 +/- 0.42 yr) performed progressive cycle exercise to fatigue on two occasions, namely during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14). Tissue extracted from the vastus lateralis before exercise and at power output corresponding to 50 and 70% of Vo(2 peak) (as determined during N) and at fatigue was used to investigate changes in homogenate SR Ca(2+)-cycling properties. Exercise in H compared with N resulted in a 19 and 21% lower (P < 0.05) PO(peak) and Vo(2 peak), respectively. During progressive exercise in N, Ca(2+)-ATPase kinetics, as determined by maximal activity, the Hill coefficient, and the Ca(2+) concentration at one-half maximal activity were not altered. However, reductions with exercise in N were noted in Ca(2+) uptake (before exercise = 357 +/- 29 micromol x min(-1) x g protein(-1); at fatigue = 306 +/- 26 micromol x min(-1) x g protein(-1); P < 0.05) when measured at free Ca(2+) concentration of 2 microM and in phase 2 Ca(2+) release (before exercise = 716 +/- 33 micromol x min(-1) x g protein(-1); at fatigue = 500 +/- 53 micromol x min(-1) x g protein(-1); P < 0.05) when measured in vitro in whole muscle homogenates. No differences were noted between N and H conditions at comparable power output or at fatigue. It is concluded that, although structural changes in SR Ca(2+)-cycling proteins may explain fatigue during progressive exercise in N, they cannot explain the lower PO(peak) and Vo(2 peak) observed during H.  相似文献   

18.
To investigate the effect of altitude exposure on running economy (RE), 22 elite distance runners [maximal O(2) consumption (Vo(2)) 72.8 +/- 4.4 ml x kg(-1) x min(-1); training volume 128 +/- 27 km/wk], who were homogenous for maximal Vo(2) and training, were assigned to one of three groups: live high (simulated altitude of 2,000-3,100 m)-train low (LHTL; natural altitude of 600 m), live moderate-train moderate (LMTM; natural altitude of 1,500-2,000 m), or live low-train low (LLTL; natural altitude of 600 m) for a period of 20 days. RE was assessed during three submaximal treadmill runs at 14, 16, and 18 km/h before and at the completion of each intervention. Vo(2), minute ventilation (Ve), respiratory exchange ratio, heart rate, and blood lactate concentration were determined during the final 60 s of each run, whereas hemoglobin mass (Hb(mass)) was measured on a separate occasion. All testing was performed under normoxic conditions at approximately 600 m. Vo(2) (l/min) averaged across the three submaximal running speeds was 3.3% lower (P = 0.005) after LHTL compared with either LMTM or LLTL. Ve, respiratory exchange ratio, heart rate, and Hb(mass) were not significantly different after the three interventions. There was no evidence of an increase in lactate concentration after the LHTL intervention, suggesting that the lower aerobic cost of running was not attributable to an increased anaerobic energy contribution. Furthermore, the improved RE could not be explained by a decrease in Ve or by preferential use of carbohydrate as a metabolic substrate, nor was it related to any change in Hb(mass). We conclude that 20 days of LHTL at simulated altitude improved the RE of elite distance runners.  相似文献   

19.
This study investigated the effects of prolonged exercise performed in normoxia (N) and hypoxia (H) on neuromuscular fatigue, membrane excitability, and Na+-K+ -ATPase activity in working muscle. Ten untrained volunteers [peak oxygen consumption (Vo2peak) = 42.1 +/- 2.8 (SE) ml x kg(-1) x min(-1)] performed 90 min of cycling during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14) at approximately 50% of normoxic Vo2peak. During N, 3-O-methylfluorescein phosphatase activity (nmol x mg protein(-1) x h(-1)) in vastus lateralis, used as a measure of Na+-K+-ATPase activity, decreased (P < 0.05) by 21% at 30 min of exercise compared with rest (101 +/- 53 vs. 79.6 +/- 4.3) with no further reductions observed at 90 min (72.8 +/- 8.0). During H, similar reductions (P < 0.05) were observed during the first 30 min (90.8 +/- 5.3 vs. 79.0 +/- 6.3) followed by further reductions (P < 0.05) at 90 min (50.5 +/- 3.9). Exercise in N resulted in reductions (P < 0.05) in both quadriceps maximal voluntary contractile force (MVC; 633 +/- 50 vs. 477 +/- 67 N) and force at low frequencies of stimulation, namely 10 Hz (142 +/- 16 vs. 86.7 +/- 10 N) and 20 Hz (283 +/- 32 vs. 236 +/- 31 N). No changes were observed in the amplitude, duration, and area of the muscle compound action potential (M wave). Exercise in H was without additional effect in altering MVC, low-frequency force, and M-wave properties. It is concluded that, although exercise in H resulted in a greater inactivation of Na+-K+-ATPase activity compared with N, neuromuscular fatigue and membrane excitability are not differentially altered.  相似文献   

20.
The adaptation of pulmonary O(2) uptake (Vo(2)(p)) kinetics is slowed in older compared with young adults during the transition to moderate-intensity exercise. In this study, we examined the relationship between Vo(2)(p) kinetics and mitochondrial pyruvate dehydrogenase (PDH) activity in young (n = 7) and older (n = 6) adults. Subjects performed cycle exercise to a work rate corresponding to approximately 90% of estimated lactate threshold. Phase 2 Vo(2)(p) kinetics were slower (P < 0.05) in older (tau = 40 +/- 17 s) compared with young (tau = 21 +/- 6 s) adults. Relative phosphocreatine (PCr) breakdown was greater (P < 0.05) at 30 s in older compared with young adults. Absolute PCr breakdown at 6 min was greater (P < 0.05) in older compared with young adults. In young adults, PDH activity increased (P < 0.05) from baseline to 30 s, with no further change observed at 6 min. In older adults, PDH activity during baseline exercise was similar to that seen in young adults. During the exercise transition, PDH activity did not increase (P > 0.05) at 30 s of exercise but was elevated (P < 0.05) after 6 min. The change in deoxyhemoglobin (HHb) was greater for a given Vo(2)(p) in older adults, and there was a similar time course of HHb accompanying the slower Vo(2)(p) kinetics in the older adults, suggesting a slower adaptation of bulk O(2) delivery in older adults. In conclusion, the slower adaptation of Vo(2)(p) in older adults is likely a result of both an increased metabolic inertia and lower O(2) availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号