首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Y Barenholz  N F Moore  R R Wagner 《Biochemistry》1976,15(16):3563-3570
The fluorescence probe 1,6-diphenyl-1,3,5-hexatriene was used to study and compare the dynamic properties of the hydrophobic region of vesicular stomatitis virus grown on L-929 cells, plasma membrane of L-929 cells prepared by two different methods, liposomes prepared from virus lipids and plasma membrane lipids, and intact L-929 cells. The rate of penetration of the probe into the hydrophobic region of the lipid bilayer was found to be much faster in the lipid vesicle bilayer as compared with the intact membrane, but in all cases the fluorescence anisotropy was constant with time. The L-cell plasma membranes, the vesicles prepared from the lipids derived from the plasma membranes, and intact cells are found to have much lower microviscosity values than the virus or virus lipid vesicles throughout a wide range of temperatures. The microviscosity of plasma membrane and plasma membrane lipid vesicles was found to depend on the procedure for plasma membrane preparation as the membranes prepared by different methods had different microviscosities. The intact virus and liposomes prepared from the virus lipids were found to have very similar microviscosity values. Plasma membrane and liposomes prepared from plasma membrane lipids also had similar microviscosity values. Factors affecting microviscosity in natural membranes and artificially mixed lipid membranes are discussed.  相似文献   

2.
The thermotropic transition of plasma membrane of Dactylis glomerata was studied by using fluorescence polarization of embedded fluorophore, 1,6-diphenyl-1,3,5-hexatriene. Under the presence of 35% ethylene glycol, reversible thermotropic transitions were observed in isolated plasma membrane vesicles in nearly the same temperature range as the temperature of freezing injury to cells. In liposomes prepared from isolated plasma membranes, however, the thermotropic transitions occurred at much lower temperatures in comparison with those of intact membrane vesicles. Following treatment with pronase, the thermotropic transition also shifted downward.

Thus, the thermotropic properties of plasma membranes appeared to be dependent on the membrane proteins. In vitro freezing of the isolated plasma membrane vesicles without addition of any cryoprotectant, such as sorbitol, resulted in an irreversible alteration both in the fluorescence anisotropy values and the temperatures for the thermotropic transition, suggesting an irreversible alteration in the membrane structure, presumably changes in lipid-protein interactions and protein conformation.

  相似文献   

3.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

4.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

5.
The interaction of tumor promoters differing in molecular structure, namely, 12-O-tetradecanoylphorbol 13-acetate (TPA) and teleocidin, with dipalmitoylphosphatidylcholine (DPPC) vesicles was studied. Investigation by Fourier transform infrared spectroscopy clarified the differences between the tumor promoters in the mode of interaction with lipid bilayer membranes. The temperature dependence of the bandwidth of the C-H or C = O stretching absorption of lipid molecules in the presence of tumor promoters relative to that in pure DPPC vesicles indicated that TPA is incorporated into the hydrophobic core of the lipid bilayer membrane whilst teleocidin binds predominantly to the membrane surface. However, both tumor promoters tend to restrict the motion of lipid molecules in membranes. The same conclusion was derived from measurements of steady-state fluorescence polarization, which showed that tumor promoters decreased the membrane fluidity. On the other hand, carboxyfluorescein (CF) leakage from vesicles was enhanced by the addition of TPA below the phase-transition temperature, whereas the effect of teleocidin on steady-state CF leakage was not as significant. It is considered that the difference in the profile of the TPA-induced increase in CF leakage compared to that of teleocidin might be ascribable to a different binding site for each tumor promoter in the membranes.  相似文献   

6.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Mero-cyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both  相似文献   

7.
The quenching efficiency of iodide as a penetrating fluorescence quencher for a membrane-associated fluorophore was utilized to measure the molecular packing of lipid bilayers. The KI quenching efficiency of tryptophan-fluorescence from melittin incorporated in DMPC bilayer vesicles peaks at the phase transition temperature (24 degrees C) of DMPC, whereas acrylamide quenching efficiency does not depend on temperature. The ability of iodide to penetrate the hydrocarbon region of the bilayer was examined by measuring the fluorescence quenching of the pyrene-phosphatidylcholine incorporated into DMPC vesicles (pyrene was attached to the 10th carbon of the sn-2 chain). The quenching efficiency of pyrene by iodide again shows a maximum at the lipid phase transition. We conclude that iodide penetrates the membrane hydrocarbon region at phase transition through an increased number of bilayer defects. The magnitude of change in quenching efficiency of iodide during lipid phase transition provides a sensitive technique to probe the lipid organization in membranes.  相似文献   

8.
The intrinsic fluorescence of the colicin A thermolytic fragment does not change after insertion into normal phospholipid vesicles and is thus an unsuitable probe for monitoring the membrane insertion process. In this paper, we report the results of studies on the quenching of this fluorescence by brominated dioleoylphosphatidylglycerol (Br-DOPG) vesicles. Bromine atoms located at the midpoint of the phospholipid acyl chain quench the tryptophan fluorescence, indicating contact between fluorophores of the protein and the bilayer's hydrophobic core. Addition of Br-DOPG vesicles to a protein solution quenches the tryptophan fluorescence in a time-dependent manner. This quenching can be fitted to a single-exponential function, and thus interpreted as a one-step process. This allows calculation of an apparent rate constant of protein insertion into the membrane. Parameters known to affect the insertion of the thermolytic fragment into phospholipid monolayers or vesicles (pH and negative charge density) also affect the rate constant in comparable ways. In addition to the information gained concerning membrane exposure in the steady state, this approach provides the first real-time method for measuring the insertion of colicin into membranes. It is highly quantitative and can be used on all versions of the protein, e.g., full size, proteolytic fragments, and mutants. Brominated lipids provide experimental conditions identical to normal lipids and allow for great flexibility in protein/lipid ratios and concentrations. The kinetic analysis shows clearly the existence of a two-step process involving a rapid adsorption of the protein to the lipid surface followed by a slow insertion.  相似文献   

9.
We investigated the physical properties of bacterial cytoplasmic membranes by applying the method of micropipette aspiration to Escherichia coli spheroplasts. We found that the properties of spheroplast membranes are significantly different from that of laboratory-prepared lipid vesicles or that of previously investigated animal cells. The spheroplasts can adjust their internal osmolality by increasing their volumes more than three times upon osmotic downshift. Until the spheroplasts are swollen to their volume limit, their membranes are tensionless. At constant external osmolality, aspiration increases the surface area of the membrane and creates tension. What distinguishes spheroplast membranes from lipid bilayers is that the area change of a spheroplast membrane by tension is a relaxation process. No such time dependence is observed in lipid bilayers. The equilibrium tension-area relation is reversible. The apparent area stretching moduli are several times smaller than that of stretching a lipid bilayer. We conclude that spheroplasts maintain a minimum surface area without tension by a membrane reservoir that removes the excessive membranes from the minimum surface area. Volume expansion eventually exhausts the membrane reservoir; then the membrane behaves like a lipid bilayer with a comparable stretching modulus. Interestingly, the membranes cease to refold when spheroplasts lost viability, implying that the membrane reservoir is metabolically maintained.  相似文献   

10.
The purpose of this study was to characterize in detail the binding of pediocin PA-1 and its fragments to target membranes by using tryptophan fluorescence as a probe. Based on a three-dimensional model (Y. Chen, R. Shapira, M. Eisenstein, and T. J. Montville, Appl. Environ. Microbiol. 63:524-531, 1997), four synthetic N-terminal pediocin fragments were selected to study the mechanism of the initial step by which the bacteriocin associates with membranes. Binding of pediocin PA-1 to vesicles of phosphatidylglycerol, the major component of Listeria membranes, caused an increase in the intrinsic tryptophan fluorescence intensity with a blue shift of the emission maximum. The Stern-Volmer constants for acrylamide quenching of the fluorescence of pediocin PA-1 in buffer and in the lipid vesicles were 8.83 +/- 0.42 and 3.53 +/- 0.67 M-1, respectively, suggesting that the tryptophan residues inserted into the hydrophobic core of the lipid bilayer. The synthetic pediocin fragments bound strongly to the lipid vesicles when a patch of positively charged amino acid residues (K-11 and H-12) was present but bound weakly when this patch was mutated out. Quantitative comparison of changes in tryptophan fluorescence parameters, as well as the dissociation constants for pediocin PA-1 and its fragments, revealed that the relative affinity to the lipid vesicles paralleled the net positive charge in the peptide. The relative affinity for the fragment containing the YGNGV consensus motif was 10-fold lower than that for the fragment containing the positive patch. Furthermore, changing the pH from 6.0 to 8.0 decreased binding of the fragments containing the positive patch, probably due to deprotonation of His residues. These results demonstrate that electrostatic interactions, but not the YGNGV motif, govern pediocin binding to the target membrane.  相似文献   

11.
Physical properties of Escherichia coli membrane lipids in logarithmic- and stationary-phase cells were studied by measuring the fluorescence polarization change of cis- and trans-parinaric acid as a function of temperature. In aqueous dispersions of phospholipids extracted from cytoplasmic and outer membranes of cells of differing growth phase, a similar polarization increase was observed over the range from physiological temperature to below 0 degrees C, and nearly the same transition ratios were obtained in all samples. The cytoplasmic membrane of both of the growth-phase cells showed a higher polarization ratio above the transition temperatures, compared to that in the aqueous dispersion of phospholipids. The polarization ratios below the transition temperatures of these specimens were lower than the value obtained with the lipids, especially in the stationary-phase specimens. The outer membrane specimens showed a similar polarization change but the transition temperature ranges were considerably higher both in the logarithmic- and the stationary-phase specimens, compared to those in the cytoplasmic membrane specimens. Freeze-thawing of logarithmic-phase cells showed the emergence of activity of certain enzymes which are known to be located in the membranes. The stationary-phase cells did not suffer from any such deleterious effect and maintained a high level of cell viability in a similar treatment. These results indicate that in the stationary-phase cell membranes lipids are in a highly ordered state, and the lipid state causes a membrane stability which results in the high resistance of the cell to freeze-thawing.  相似文献   

12.
The interaction of adriamycin with lipids was studied in model (monolayers, small unilamellar vesicles, large multilamellar vesicles) and natural (chinese hamster ovary cell) membranes by measurement of fluorescence energy transfer and fluorescence quenching. 2-APam, 7-ASte, 12-ASte and anthracene-phosphatidylcholine were used as fluorescent probes in which the anthracene group is well located at graded depths in the membrane. Egg-yolk phosphatidylcholine and a 1/1 mixture of it with bovine brain phosphatidylserine were used in model membrane systems. Large fluorescence energy transfer was observed between these molecules as donors and the drug as acceptor. With liposomes, at pH 7.4 and over an adriamycin concentration range of 0-100 microM, the efficiency of energy transfer was 12-ASte greater than 7-ASte greater than 2-APam, with 100% energy transfer for 12-ASte above a drug concentration of 30 microM. At pH 5, where the fatty acids are buried deeper (0.45 nm) in the lipid bilayer due to protonation of the carboxyl group, the order of energy transfer 7-ASTe greater than 12-ASte = 2-APam was observed. Measurements of fluorescence quenching using the non-permeant Cu2+ ion as quencher and spectrophotometric assays indicated that around 40% of the adriamycin molecules were deeply embedded in the lipid bilayer. Adriamycin molecules thus appear to penetrate the lipid bilayer, with the aminoglycosyl group interacting with the lipid phosphate groups and the dihydroanthraquinone residue in contact with the lipid fatty acid chains. In contrast, fluorescence energy transfer and quenching studies on CHO cells showed that adriamycin penetrated the plasma membrane of these cells to a much more limited extent than in the model membrane systems. This can be related to the squeezing out of the drug from a film of phosphatidylcholine which was observed in monolayers by means of surface pressure, potential and fluorescence experiments. These observations indicated that the penetration of adriamycin into lipid bilayers strongly depends on the molecular packing of the lipid.  相似文献   

13.
Correction     
We investigated the physical properties of bacterial cytoplasmic membranes by applying the method of micropipette aspiration to Escherichia coli spheroplasts. We found that the properties of spheroplast membranes are significantly different from that of laboratory-prepared lipid vesicles or that of previously investigated animal cells. The spheroplasts can adjust their internal osmolality by increasing their volumes more than three times upon osmotic downshift. Until the spheroplasts are swollen to their volume limit, their membranes are tensionless. At constant external osmolality, aspiration increases the surface area of the membrane and creates tension. What distinguishes spheroplast membranes from lipid bilayers is that the area change of a spheroplast membrane by tension is a relaxation process. No such time dependence is observed in lipid bilayers. The equilibrium tension-area relation is reversible. The apparent area stretching moduli are several times smaller than that of stretching a lipid bilayer. We conclude that spheroplasts maintain a minimum surface area without tension by a membrane reservoir that removes the excessive membranes from the minimum surface area. Volume expansion eventually exhausts the membrane reservoir; then the membrane behaves like a lipid bilayer with a comparable stretching modulus. Interestingly, the membranes cease to refold when spheroplasts lost viability, implying that the membrane reservoir is metabolically maintained.  相似文献   

14.
The fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles is a function of the physical state of the lipid. Below the phase transition, the polarization approaches the theoretical maximum for total immobilization while above the phase transition the fluorescence becomes nearly completely depolarized. The discontinuity in the temperature dependence of polarization occurs within a temperature range under 5 degrees C in the case of pure phospholipids, but for mixed phospholipids occurs over a temperature range greater than 20 degrees C. From these data, phase diagrams describing the gel-sol equilibrium can be constructed; the phase diagrams correspond well with those described in the literature which were constructed using spin-label probes or from x-ray diffraction patterns. The marked change in polarization at the phase transition may be related to the packing of the probe molecule into the lipid bilayer: fluorescence measurements on oriented bilayers indicate that below the phase transition the long axis of the probe is oriented perpendicular to the plane of the membrane while above the transition the probe is oriented randomly relative to the plane of the membrane.  相似文献   

15.
Addition of an amphipathic bee venom peptide, melittin, to sarcoplasmic reticulum (SR) vesicles isolated from rabbit skeletal muscles resulted in a fast (<1 min) blue shift in the fluorescence maximum of the melittin--SR membrane complex. Over the following 45 min the position of the fluorescence maximum did not change, but the fluorescence intensity of the melittin--SR membrane complex decreased by approximately 35% with rate constant 0.14 min-1. Melittin rapidly quenched the isotropic signal in the EPR spectrum of spin-labeled stearic acid added to SR membranes. Further changes in the spectral parameters of the spin probe bound to SR membranes in the presence of melittin indicated an increase of the viscosity of the probe microenvironment (empiric parameter T/eta was decreased by approximately 35% with rate constant 0.11 min-1). The surface potential of SR membranes measured using a pH-sensitive dye, neutral red, decreased after melittin addition from -60 to -30 mV. It was demonstrated with the use of a cross-linking agent, cupric o-phenanthroline, that melittin induced slow aggregation of Ca-ATPase protein in SR membranes; the content of enzyme in the monomeric form decreased with rate constant 0.14 min-1. It is concluded that melittin binds rapidly to SR membranes, inducing slow changes in Ca-ATPase conformation and oligomeric state as well as structural transitions in the lipid bilayer of SR membranes.  相似文献   

16.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

17.
Steady state and nanosecond fluorescence polarization studies were carried out on membranes of a “bromodeoxyuridine (BUdR) dependent” cell line (B4) derived from a malignant Syrian hamster melanoma line. When grown in the presence of BUdR B4 cells resemble transformed cells (in terms of several biological characteristics), while B4 cells grown in the absence of BUdR resemble untransformed cells. B4 cells were labelled with the lipid probe 1,6-diphenyl-1,3,5-hexatriene, which had been used previously to show that fluorescence polarization values of membrane lipids of virally transformed cells are higher than fluorescence polarization values of membrane lipids of untransformed cells. The steady state fluorescence polarization values of membrane lipids of B4 cells in BUdR were found to be larger than those of cells in the absence of BUdR, and the change in fluorescence polarization values was found to be fully reversible. Nsec rotational correlation time experiments confirmed and extended the steady state results. The results of the fluorescence polarization studies suggest that the membranes of B4 cells grown in the presence of BUdR resemble those of virally transformed cells while membranes of B4 cells grown in the absence of BUdR resemble those of untransformed cells.  相似文献   

18.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the alteration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.  相似文献   

19.
The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.  相似文献   

20.
In order to monitor the membrane fluidity of cells without perturbation by an introduced probe, we developed a method for large-scale preparation of 2H-labeled melanoma cells for a 2H NMR study by incubating melanoma cells with [18,18,18-2H3]stearic acid/phosphatidylcholine liposomes for 2 h at 37 degrees C. It turned out that this treatment did not significantly change the cell viability, lipid metabolism or membrane fluidity. The 2H from C-18 of stearic acid is dominantly located at the original position of the fatty acid in the 2H-labeled membrane vesicles, as studied by a tracer experiment with [1-14C]stearic acid. We found that three to four 2H-labeled species were present at 19 degrees C in 2H NMR spectra of the 2H-labeled membrane vesicles prepared from B16 melanoma cells. The extent of peak-splittings due to 2H-quadrupole interaction decreased as the temperature rose, and a definite point of phase transition was not observed. At elevated temperature, 2H-labeled lipids undergo fast exchange between the bilayer and an isotropic phase such as oil phase of triolein or inverted micelles in lipid polymorphs. We further analyzed the change of membrane organization in mouse B16 melanoma cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), which strongly inhibited melanogenesis. The magnitude of the quadrupole splitting at 19 degrees C in membranes from TPA-treated cells was significantly less (40%) than in the untreated control. This is mainly explained by decreased molecular ordering (fluidity) due to the increased amount of unsaturated fatty acids in the membranes of TPA-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号