首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently obtained evidence that the activity of spinach (Spinacia oleracea L.) leaf nitrate reductase (NR) responds rapidly and reversibly to light/dark transitions by a mechanism that is strongly correlated with protein phosphorylation. Phosphorylation of the NR protein appears to increase sensitivity to Mg2+ inhibition, without affecting activity in the absence of Mg2+. In the present study, we have compared the light/dark modulation of sucrose-phosphate synthase (SPS), also known to be regulated by protein phosphorylation, and NR activities (assayed with and without Mg2+) in spinach leaves. There appears to be a physiological role for both enzymes in mature source leaves (production of sucrose and amino acids for export), whereas NR is also present and activated by light in immature sink leaves. In mature leaves, there are significant diurnal changes in SPS and NR activities (assayed under selective conditions where phosphorylation status affects enzyme activity) during a normal day/night cycle. With both enzymes, activities are highest in the morning and decline as the photoperiod progresses. For SPS, diurnal changes are largely the result of phosphorylation/dephosphorylation, whereas with NR, the covalent modification is super-imposed on changes in the level of NR protein. Accumulation of end products of photosynthesis in excised illuminated leaves increased maximum NR activity, reduced its sensitivity of Mg2+ inhibition, and prevented the decline in activity with time in the light seen with attached leaves. In contrast, SPS was rapidly inactivated in excised leaves. Overall, NR and SPS share many common features of control but are not identical in terms of regulation in situ.  相似文献   

2.
Two nitrate reductase (NR) mutants were selected for low nitrate reductase (LNR) activity by in vivo NR microassays of M2 seedlings derived from nitrosomethylurea-mutagenized soybean (Glycine max [L.] Merr. cv Williams) seeds. The mutants (LNR-5 and LNR-6) appeared to have normal nitrate-inducible NR activity. Both mutants, however, showed decreased NR activity in vivo and in vitro compared with the wild-type. In vitro FMNH2-dependent nitrate reduction and Cyt c reductase activity of nitrate-grown plants, and nitrogenous gas evolution during in vivo NR assays of urea-grown plants, were also decreased in the mutants. The latter observation was due to insufficient generation of nitrite substrate, rather than some inherent difference in enzyme between mutant and wild-type plants. When grown on urea, crude extracts of LNR-5 and LNR-6 lines had similar NADPH:NR activities to that of the wild type, but both mutants had very little NADH:NR activity, relative to the wild type. Blue Sepharose columns loaded with NR extract of urea-grown mutants and sequentially eluted with NADPH and NADH yielded a NADPH:NR peak only, while the wild-type yielded both NADPH: and NADH:NR peaks. Activity profiles confirmed the lack of constitutive NADH:NR in the mutants throughout development. The results provide additional support to our claim that wild-type soybean contains three NR isozymes, namely, constitutive NADPH:NR (c1NR), constitutive NADH:NR (c2NR), and nitrate-inducible NR (iNR).  相似文献   

3.
A single isoform, NADH: nitrate reductase (NR), was purified 500 folds from sunflower leaves by affinity chromatography on Blue Sepharose CL-6B. Purified NR had a pH optima of 7.25 and a molecular weight of 210 kD. In SDS-PAGE, two bands of 47 and 56 kD were obtained. NADH: ferric citrate reductase activity was copurified with NR with a specific activity of 2. The Vmax of NADH: ferric citrate reductase was 8.69 units mg-1 protein and the apparent Km for ferric citrate was 0.435 mM.  相似文献   

4.
Intact glyoxysomes were isolated from castor bean endosperm on isometric Percoll gradients. The matrix enzyme, malate dehydrogenase, was 80% latent in the intact glyoxysomes. NADH:ferricyanide and NADH:cytochrome c reductase activities were measured in intact and deliberately broken organelles. The latencies of these redox activities were found to be about half the malate dehydrogenase latency. Incubation of intact organelles with trypsin eliminated NADH:cytochrome c reductase activity, but did not affect NADH:ferricyanide reductase activity. NADH oxidase and transhydrogenase activities were negligible in isolated glyoxysomes. Mersalyl and Cibacron blue 3GA were potent inhibitors of NADH:cytochrome c reductase. Quinacrine, Ca2+ and Mg2+ stimulated NADH:cytochrome c reductase activity in intact glyoxysomes. The data suggest that some electron donor sites are on the matrix side and some electron acceptor sites are on the cytosolic side of the membrane.  相似文献   

5.
Glyoxysomes isolated from castor bean (Ricinus communis L., var Hale) endosperm had NADH:ferricyanide reductase and NADH:cytochrome c reductase activities averaging 720 and 140 nanomole electrons/per minute per milligram glyoxysomal protein, respectively. These redox activities were greater than could be attributed to contamination of the glyoxysomal fractions in which 1.4% of the protein was mitochondrial and 5% endoplasmic reticulum. The NADH:ferricyanide reductase activity in the glyoxysomes was greater than the palmitoyl-coenzyme A (CoA) oxidation activity which generated NADH at a rate of 340 nanomole electrons per minute per milligram glyoxysomal protein. Palmitoyl-CoA oxidation could be coupled to ferricyanide or cytochrome c reduction. Complete oxidation of palmitoyl-CoA, yielding 14 nanomole electrons/per nanomole palmitoyl-CoA, was demonstrated with the acceptors, NAL, cytochrome c, and ferricyanide. Malate was also oxidized by glyoxysomes, if acetyl-CoA, ferricyanide, or cytochrome c was present. Glyoxysomal NADH:ferricyanide reductase activity has the capacity to support the combined rates of NADH generation by β-oxidation and the glyoxylate cycle.  相似文献   

6.
When nitrate reductase (NR) purified from Chlorella was incubated with NR-inactivating proteins purified from corn roots and rice cell suspension cultures or with trypsin there was a loss in NADH-NR and NADH cytochrome c reductase (NADH-CR) activities with time whereas the reduced methylviologen NR (MV-NR) remained active. When NADH-NR and NADH-CR activities were inactivated completely by the incubation with corn protein, the major protein band obtained by polyacrylamide gel electrophoresis shifted from an RF value of 0.12 to an RF of 0.25 and reduced MV-NR activity moved to the new position on the gel. When NADH-NR and NADH-CR activities were partially inactivated by the corn protein, NADH-NR activity was detected in an intermediate position (RF value of 0.18). Incubation with trypsin also caused a change in the NR protein migration pattern (RF value of 0.20). This protein band also had reduced MV-NR activity. Thus, the corn inactivator degrades NR in a fashion similar to but not identical with trypsin. The incubation of NR with rice inactivating protein resulted in a loss of NADH-NR but had no effect on the migration of NR protein or on the reduced MV-NR activity or mobility suggesting that the rice protein binds to Chlorella NR.  相似文献   

7.
Soybean (Glycine max L. Merr.) leaves contain two forms of nitrate reductase (NR)—NAD(P)H:NR and NADH:NR. Wild-type (cv Williams), nr1 mutant and an unrelated cultivar (Prize) were grown with either no N source or with nitrate. Crude extracts were assayed for NR activities and the enzyme forms were purified on blue Sepharose. Analyses were done by polyacrylamide gel electrophoresis and `Western blotting' using antibodies specific for NR. NAD(P)H:NR was identified as the constitutive NR present in wild-type and Prize, but was absent from the mutant. All three soybean lines contained nitrate-inducible NADH:NR with highest activity at pH 7.5. The results showed that NAD(P)H:NR and constitutive NR were one in the same and confirmed the presence of NADH:NR with pH 7.5 optimum.  相似文献   

8.
Plasma-membrane (PM) vesicles isolated from 6-d-old corn roots by sucrose gradient centrifugation or two-phase partitioning showed an NADH-dependent nitrate reductase (NR) activity averaging at 40 nmol per milligram PM protein per hour. This membrane-associated NR activity could not be removed from two-phase-partitioned PM vesicles by salt washing, osmotic shock treatment, sonication, or freeze-thawing to reverse vesicle sidedness. Therefore, it could not be attributed to contamination of membrane vesicles by the soluble, cytosolic NR. Plasma-membrane vesicles reduced NO 3 - in the presence of the electron donors NADH or NADPH at an activity ratio of 2.2. The NADH- and NADPH-dependent NR activities of outside-out oriented PM vesicles differed in their sensitivity toward the detergent Brij 58, leading to a latency of 65% or 29% using NADH or NADPH as electron donor, respectively. The activities of NO 3 - reduction in the presence of saturating concentrations of NADH and NADPH were additive. Furthermore, both activities were characterized by a different pH dependence with a pH optimum of 7.5 for the NADH-dependent activity and of 6.8 for the NADPH-dependent activity. The membrane-associated NAD(P)H-dependent NR activities responded to different nitrogen nutrition of plants in a manner different from the soluble forms of the enzyme. The data confirm the existence of a corn PM NR and suggest that there may be two different NO 3 - -reducing enzymes located at the PM of corn roots.Abbreviations PM Plasma membrane - NR nitrate reductase This research was supported by grants from the National Research Council of Italy (bilateral project between Italy and Germany to Z.V. and U.L.), by the Ministero dell' Università e Ricera Scientifice e Tecnologica (MURST 40%) and by the Deutsche Forschungsgemeinschaft.  相似文献   

9.
Redox activities, NADH:ferricyanide reductase, NAD(P)H:cytochrome reductases, and NADH:ascorbate free-radical reductase, are present in endoplasmic reticulum (ER) and glyoxysomal membranes from the endosperm of germinating castor bean (Ricinus comminus L. var Hale). The development of these functions was followed in glyoxysomes and ER isolated on sucrose gradients from castor bean endosperm daily from 0 through 6 days of germination. On a per seed basis, glyoxysomal and ER protein, glyoxysomal and ER membrane redox enzyme activities, and glyoxylate cycle activities peaked at day 4 as did the ER membrane content of cytochrome P-450. NADH:ferricyanide reductase was present in glyoxysomes and ER isolated from dry seed. This activity increased only about twofold in glyoxysomes and threefold in ER during germination relative to the amount of protein in the respective fractions. The other reductases, NADH:cytochrome reductase and NADH:ascorbate free-radical reductase, increased about 10-fold in the ER relative to protein up to 4 to 5 days, then declined. NADPH:cytochrome reductase reached maximum activity relative to protein at day 2 in both organelles. The increases in redox activities during germination indicate that the membranes of the ER and glyoxysome are being enriched with redox proteins during their development. The development of redox functions in glyoxysomes was found to be coordinated with development of the glyoxylate cycle.  相似文献   

10.
The biochemical characteristics and diurnal changes in activity of the enzyme nitrate reductase (NR; EC 1.6.6.1) from the marine red alga Gracilaria tenuistipitata var. liui Zhang et Xia are described. Different assay conditions were tested to determine the stability of NR. The crude extract of G. tenuistipitata has a NR specific activity of 10.2 U.mg−1, which is higher than the NR activities found for other algae, plants, and fungi. This NR is highly active at a slightly alkaline pH and is stable over a wide range of temperature, with an optimal activity at 20° C. The apical portions of the thallus contain 64.9 ± 6.6% of the total NR specific activity. The apparent Michaelis-Menten (Km) constant found for KNO3 was 197 μM, and it was 95 μM for NADH. The NR from G. tenuistipitata can be included in the NADH-specific group, because no activity was found when NADPH was used as an electron donor. In extracts of algae grown under either continuously dim light or a light-dark cycle, the activity of NR exhibits a daily rhythm, peaking at the middle of the light phase, when activity is 30-fold higher than during the night phase.  相似文献   

11.
Purification and Kinetics of Higher Plant NADH:Nitrate Reductase   总被引:17,自引:12,他引:5       下载免费PDF全文
Squash cotyledon (Cucurbita pepo L.) NADH:nitrate reductase (NR) was purified 150-fold with 50% recovery by a single step procedure based on the affinity of the NR for blue-Sepharose. Blue-Sepharose, which is prepared by direct coupling of Cibacron blue to Sepharose, appears to bind squash NR at the NADH site. The NR can be purified in 2 to 3 hours to a specific activity of 2 μmol of NADH oxidized/minute • milligram of protein. Corn (Zea mays L.) leaf NR was also purified to a specific activity of 6.9 μmol of NADH oxidized/minute • milligram of protein using a blue-Sepharose affinity step. The blue-Sepharose method offers the advantages of a rapid purification of plant NR to a high specific activity with reasonable recovery of total activity.

The kinetic mechanism of higher plant NR was investigated using these highly purified squash and corn NR preparations. Based on initial velocity and product inhibition studies utilizing both enzymes, a two-site ping-pong mechanism is proposed for NR. This kinetic mechanism incorporates the concept of the reduced NR transferring electrons from the NADH site to a physically separated nitrate site.

  相似文献   

12.
Homogeneous squash cotyledon reduced nicotinamide-adenine dinucleotide (NADH):nitrate reductase (NR) was isolated using blue-Sepharose and polyacrylamide gel electrophoresis. Gel slices containing NR were pulverized and injected into a previously unimmunized rabbit. This process was repeated weekly and antiserum to NR was obtained after four weeks. Analysis of the antiserum by Ouchterlony double diffusion using a blue-Sepharose preparation of NR resulted in a single precipitin band while immunoelectrophoresis revealed two minor contaminants. The antiserum was found to inhibit the NR reaction and the partial reactions to different degrees. When the NADH:NR and the reduced methyl viologen:NR activities were inhibited 90% by specifically diluted antiserum, the reduction of cytochrome c was inhibited 50%, and the reduction of ferricyanide was inhibited only 30%. Antiserum was also used to compare the cross reactivities of NR from squash cotyledons, spinach, corn, and soybean leaves, Chlorella vulgaris, and Neurospora crassa. These tests revealed a high degree of similarity between NADH:NR from the squash and spinach, while NADH:NR from corn and soybean and the NAD(P)H:NR from soybean were less closely related to the squash NADH:NR. The green algal (C. vulgaris) NADH:NR and the fungal (N. crassa) NADPH:NR were very low in cross reactivity and are apparently quite different from squash NADH:NR in antigenicity. Antiserum to N. crassa NADPH:NR failed to give a positive Ouchterlony result with higher plant or C. vulgaris NADH:NR, but this antiserum did inhibit the activity of squash NR. Thus, it can be concluded from these immunological comparisons that all seven forms of assimilatory NR studied here have antigenic determinants in common and are probably derived from a common ancestor. Although these assimilatory NR have similar catalytic characteristics, they appear to have diverged to a great degree in their structural features.  相似文献   

13.
Ascorbate free-radical reduction by glyoxysomal membranes   总被引:5,自引:2,他引:3       下载免费PDF全文
Glyoxysomal membranes from germinating castor bean (Ricinus communis L. cv Hale) endosperm contain an NADH dehydrogenase. This enzyme can utilize extraorganellar ascorbate free-radical as a substrate and can oxidize NADH at a rate which can support intraglyoxysomal demand for NAD+. NADH:ascorbate free-radical reductase was found to be membrane-associated, and the activity remained in the membrane fraction after lysis of glyoxysomes by osmotic shock, followed by pelleting of the membranes. In whole glyoxysomes, NADH:ascorbate free-radical reductase, like NADH:ferricyanide reductase and unlike NADH:cytochrome c reductase, was insensitive to trypsin and was not inactivated by Triton X-100 detergent. These results suggest that ascorbate free-radical is reduced by the same component which reduces ferricyanide in the glyoxysomal membrane redox system. NADH:ascorbate free-radical reductase comigrated with NADH:ferricyanide and cytochrome c reductases when glyoxy-somal membranes were solubilized with detergent and subjected to rate-zonal centrifugation. The results suggest that ascorbate free-radical, when reduced to ascorbate by membrane redox system, could serve as a link between glyoxysomal metabolism and other cellular activities.  相似文献   

14.
The cotyledons of soybean begin to develop photosynthetic capacity shortly after emergence. The cotyledons develop nitrate reductase (NR) activity in parallel with an increase in chlorophyll and a decrease in protein. In crude extracts of 5- to 8-day-old cotyledons, NR activity is greatest with NADH as electron donor. In extracts of older cotyledons, NR activity is greatest with NADPH. Blue-Sepharose was used to purify and separate the NR activities into two fractions. When the blue-Sepharose was eluted with NADPH, NR activity was obtained which was most active with NADPH as electron donor. Assays of the NADPH-eluted NR with different concentrations of nitrate revealed that the highest activity was obtained in 80 millimolar KNO3. Thus, this fraction has properties similar to the low nitrate affinity NAD(P)H:NR of soybean leaves. When 5- to 8-day-old cotyledons were extracted and purified, further elution of the blue-Sepharose with KNO3, subsequent to the NADPH elution, yielded an NR fraction most active with NADH. Assays of this fraction with different nitrate concentrations revealed that this NR had a higher nitrate affinity and was similar to the NADH:NR of soybean leaves. The KNO3-eluted NR fraction which was purified from the extracts of 9- to 14-day-old cotyledons, was most active with NADPH. The analysis of these fractions prepared from the extracts of older cotyledons indicated that residual NAD(P)H:NR contaminated the NADH:NR. Despite this complication, the pattern of development of the purified NR fractions was consistent with the changes observed in the crude extract NR activities. It was concluded that NADH:NR was most active in young cotyledons and that as the cotyledons aged the NAD(P)H:NR became more active.  相似文献   

15.
The molecular basis for the action of two natural inactivator proteins, isolated from rice and corn, on a purified assimilatory nitrate reductase has been examined by several physical techniques. Incubation of purified Chlorella nitrate reductase with either rice inactivator protein or corn inactivator protein results in a loss of NADH:nitrate reductase and the associated partial activity, NADH:cytochrome c reductase, but no loss in nitrate-reducing activity with reduced methyl viologen as the electron donor. The molecular weight of the reduced methyl viologen:nitrate reductase species, determined by sedimentation equilibrium in the Beckman airfuge after complete inactivation with rice inactivator protein or with corn inactivator protein, was 595,000 and 283,000, respectively, compared to a molecular weight of 376,000 for the untreated control determined under the same conditions. Two protein peaks were observed after molecular-sieve chromatography on Sephacryl S-300 of nitrate reductase inactivated by corn inactivator protein. The Stokes radii of these fragments were 68 and 24 Å, compared to a value of 81 Å for untreated nitrate reductase. The large fragment contained molybdenum and heme but no flavin, and had nitrate-reducing activity with reduced methyl viologen as electron donor. The small fragment contained FAD but had no NADH:cytochrome c reductase or nitrate-reducing activities. Molecular weights determined by sodium dodecyl sulfate-gel electrophoresis were 67,000 and 28,000 for the large and small fragments, respectively, compared to a subunit molecular weight of 99,000 determined for the untreated control. No change in subunit molecular weight of nitrate reductase after inactivation by rice inactivator protein was observed. These results indicate that rice inactivator protein acts by binding to nitrate reductase. The stoichiometry of binding is 1–2 molecules of rice inactivator protein to one tetrameric molecule of nitrate reductase. Corn inactivator protein, in contrast, acts by cleavage of a Mr 30,000 fragment from nitrate reductase which is associated with FAD. The remaining fragment is a tetramer of Mr 70,000 subunits which retains nitrate-reducing activity and contains molybdenum and heme but has no NADH:dehydrogenase activity. The action of rice inactivator protein was partially prevented by NADH and completely prevented by a combination of NADH and cyanide, while the action of corn inactivator protein was not significantly affected by these effectors.  相似文献   

16.
The NAD(P)H-nitrate reductase complex (overall-NR) of Chlamydomonas reinhardii exhibits two partial activities: NAD(P)H-cytochrome c reductase (diaphorase) and reduced benzyl viologen-NR (terminal-NR). Mild tryptic digestion of the enzyme complex resulted in the loss of both overall and terminal-NR activities, whereas diaphorase activity remained unaltered. The diaphorase activity of mutant 104 and the terminal-NR activity of mutant 305 of C. reinhardii, which are the sole activities related to NR present in these mutants, responded to tryptic treatment to the same extent as the corresponding activities of the wild enzyme complex. Trypsin disassembled the 220-kd NR native complex by destroying the aggregation capability of the diaphorase subunits without affecting their activity nor molecular size (45 kd). A 67-kd thermostable protein, containing molybdenum co-factor, was also released from trypsin-treated NR. This protein lacked diaphorase and NR activities but was able to reconstitute the overall-NR complex by complementation with untreated diaphorase subunit of mutant 104. Our results support a tetrameric structure for the C. reinhardii NR complex, containing two kinds of subunits.  相似文献   

17.
Preincubation of nitrate reductase (NR) extracted from wheat shoot tips with NADH in vitro, activated and stabilized activity at both O° and 25°. However, preincubation with potassium ferricyanide inactivated the NR in vitro. NADH also stabilized the NR activity in extracts from maize shoot tips. It was observed that NR from both wheat and maize was active at low temperatures.  相似文献   

18.
NADH:nitrate reductase (EC 1.6.6.1) and NAD(P)H:nitrate reductase (EC 1.6.6.2) were purified from wild-type soybean (Glycine max [L.] Merr., cv Williams) and nr1-mutant soybean plants. Purification included Blue Sepharose- and hydroxylapatite-column chromatography using acetone powders from fully expanded unifoliolate leaves as the enzyme source.

Two forms of constitutive nitrate reductase were sequentially eluted with NADPH and NADH from Blue Sepharose loaded with extract from wild-type plants grown on urea as sole nitrogen source. The form eluted with NADPH was designated c1NR, and the form eluted with NADH was designated c2NR. Nitrate-grown nr1 mutant soybean plants yielded a NADH:nitrate reductase (designated iNR) when Blue Sepharose columns were eluted with NADH; NADPH failed to elute any NR form from Blue Sepharose loaded with this extract. Both c1NR and c2NR had similar pH optima of 6.5, sedimentation behavior (s20,w of 5.5-6.0), and electrophoretic mobility. However, c1NR was more active with NADPH than with NADH, while c2NR preferred NADH as electron donor. Apparent Michaelis constants for nitrate were 5 millimolar (c1NR) and 0.19 millimolar (c2NR). The iNR from the mutant had a pH optimum of 7.5, s20,w of 7.6, and was less mobile on polyacrylamide gels than c1NR and c2NR. The iNR preferred NADH over NADPH and had an apparent Michaelis constant of 0.13 millimolar for nitrate.

Thus, wild-type soybean contains two forms of constitutive nitrate reductase, both differing in their physical properties from nitrate reductases common in higher plants. The inducible nitrate reductase form present in soybeans, however, appears to be similar to most substrateinduced nitrate reductases found in higher plants.

  相似文献   

19.
Initial rate studies of spinach (Spinacia oleracea L.) nitrate reductase showed that NADH:nitrate reductase activity was ionic strength dependent with elevated ionic concentration resulting in inhibition. In contrast, NADH:ferricyanide reductase was markedly less ionic strength dependent. At pH 7.0, NADH:nitrate reductase activity exhibited changes in the Vmax and Km for NO3 yielding Vmax values of 6.1 and 4.1 micromoles NADH per minute per nanomoles heme and Km values of 13 and 18 micromolar at ionic strengths of 50 and 200 millimolar, respectively. Control experiments in phosphate buffer (5 millimolar) yielded a single Km of 93 micromolar. Chloride ions decreased both NADH:nitrate reductase and reduced methyl viologen:nitrate reductase activities, suggesting involvement of the Mo center. Chloride was determined to act as a linear, mixed-type inhibitor with a Ki of 15 millimolar for binding to the native enzyme and 176 millimolar for binding to the enzyme-NO3 complex. Binding of Cl to the enzyme-NO3 complex resulted in an inactive E-S-I complex. Electron paramagnetic resonance spectra showed that chloride altered the observed Mo(V) lineshape, confirming Mo as the site of interaction of chloride with nitrate reductase.  相似文献   

20.
The properties of NADH-dependent Fe3+-EDTA reductase in plasma membranes (PM) from roots of iron-deficient and -sufficient tomato plants [Lycopersicon esculentum L. (Mill.) cv. Abunda] were examined. Iron deficiency resulted in a 3-fold increase of in vivo root iron-chelate reductase activity with a Km (Fe3+-EDTA) of 230 μM. In purified root PM, average specific activities of ferric chelate reductase of 410 and 254 nmol Fe (mg protein)?1 min?1 were obtained for iron-deficient and -sufficient plants, respectively. In both cases, the PM-bound activity showed a pH optimum at pH 6.8. Activity depended on NADH and not on NADPH and on the presence of detergent. The activity was inhibited 40-50% by superoxide dismutase (EC 1.15.1.1) and ca 30% by oxygen. Kinetic analysis of the membrane-bound enzyme revealed a Km (Fe3+-EDTA) of ca 200 μM for both iron-stressed and -sufficient plants. For NADH, Km values around 230 μM were obtained. The ferric chelate reductase could be solubilised from salt-washed PM with Triton X-100 at a protein:detergent ratio of 1:2.8 (w/w). The Triton-soluble fraction revealed one enzyme-stained band in native polyacrylamide electrophoresis. Although the membranes showed no nitrate reductase (NR; EC 1.6.6.1) activity, anti-spinach NR immunoglobulin G (IgG) recognized a 54 kDa band both in the PM and the Triton-soluble fraction, but not in the enzymatically active material obtained from the native gel. No evidence could be found for the synthesis of a new, biochemically distinct PM-bound ferric chelate reductase under iron deficiency, which might be identified as the so-called Turbo reductase. It is concluded that iron deficiency in tomato induces increased expression of a ferric chelate reductase in root PM, which is already present in iron-sufficient plants and probably also in plants, which do not contain the Turbo reductase, like the grasses. The iron reductase is not identical with the recently reported PM-associated nitrate reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号