首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ras family small GTPase Rap is regulated by an array of specific guanine nucleotide exchange factors (GEFs) in response to upstream stimuli. RA-GEF-1 was identified as a novel Rap GEF, which possesses a Ras/Rap1-associating (RA) domain. Here we report a protein closely related to RA-GEF-1, named RA-GEF-2. Like RA-GEF-1, a putative cyclic nucleotide monophosphate-binding domain, a Ras exchanger motif, a PSD-95/DlgA/ZO-1 domain, and an RA domain in addition to the GEF catalytic domain are found in RA-GEF-2. However, RA-GEF-2 displays a different tissue distribution profile from that of RA-GEF-1. RA-GEF-2 stimulates guanine nucleotide exchange of both Rap1 and Rap2, but not Ha-Ras. The RA domain of RA-GEF-2 binds to M-Ras in a GTP-dependent manner, but not to other Ras family GTPases tested, including Ha-Ras, N-Ras, Rap1A, Rap2A, R-Ras, RalA, Rin, Rit, and Rheb, in contrast to the RA domain of RA-GEF-1, which specifically binds to Rap1. In accordance with this, RA-GEF-2 colocalizes with activated M-Ras in the plasma membrane in COS-7 cells, suggesting a role of RA-GEF-2 in the regulation of Rap1 and Rap2, particularly in the plasma membrane. In fact, an increase in the level of the GTP-bound form of plasma membrane-located Rap1 was observed when coexpressed with RA-GEF-2 and activated M-Ras. Thus, RA-GEF-2 acts as a GEF for Rap1 and Rap2 downstream of M-Ras in the plasma membrane, whereas RA-GEF-1 exerts Rap GEF function in perinuclear compartments including the Golgi apparatus.  相似文献   

2.
A yeast two-hybrid screening for Ras-binding proteins in nematode Caenorhabditis elegans has identified a guanine nucleotide exchange factor (GEF) containing a Ras/Rap1A-associating (RA) domain, termed Ce-RA-GEF. Both Ce-RA-GEF and its human counterpart Hs-RA-GEF possessed a PSD-95/DlgA/ZO-1 (PDZ) domain and a Ras exchanger motif (REM) domain in addition to the RA and GEF domains. They also contained a region homologous to a cyclic nucleotide monophosphate-binding domain, which turned out to be incapable of binding cAMP or cGMP. Although the REM and GEF domains are conserved with other GEFs acting on Ras family small GTP-binding proteins, the RA and PDZ domains are unseen in any of them. Hs-RA-GEF exhibited not only a GTP-dependent binding activity to Rap1A at its RA domain but also an activity to stimulate GDP/GTP exchange of Rap1A both in vitro and in vivo at the segment containing its REM and GEF domains. However, it did not exhibit any binding or GEF activity toward Ras. On the other hand, Ce-RA-GEF associated with and stimulated GDP/GTP exchange of both Ras and Rap1A. These results indicate that Ce-RA-GEF and Hs-RA-GEF define a novel class of Rap1A GEF molecules, which are conserved through evolution.  相似文献   

3.
The Rap1 small GTPase has been implicated in regulation of integrin-mediated leukocyte adhesion downstream of various chemokines and cytokines in many aspects of inflammatory and immune responses. However, the mechanism for Rap1 regulation in the adhesion signaling remains unclear. RA-GEF-2 is a member of the multiple-member family of guanine nucleotide exchange factors (GEFs) for Rap1 and characterized by the possession of a Ras/Rap1-associating domain, interacting with M-Ras-GTP as an effector, in addition to the GEF catalytic domain. Here, we show that RA-GEF-2 is specifically responsible for the activation of Rap1 that mediates tumor necrosis factor-alpha (TNF-alpha)-triggered integrin activation. In BAF3 hematopoietic cells, activated M-Ras potently induced lymphocyte function-associated antigen 1 (LFA-1)-mediated cell aggregation. This activation was totally abrogated by knockdown of RA-GEF-2 or Rap1. TNF-alpha treatment activated LFA-1 in a manner dependent on M-Ras, RA-GEF-2, and Rap1 and induced activation of M-Ras and Rap1 in the plasma membrane, which was accompanied by recruitment of RA-GEF-2. Finally, we demonstrated that M-Ras and RA-GEF-2 were indeed involved in TNF-alpha-stimulated and Rap1-mediated LFA-1 activation in splenocytes by using mice deficient in RA-GEF-2. These findings proved a crucial role of the cross-talk between two Ras-family GTPases M-Ras and Rap1, mediated by RA-GEF-2, in adhesion signaling.  相似文献   

4.
Although the Ras subfamily of GTPases consists of approximately 20 members, only a limited number of guanine nucleotide exchange factors (GEFs) that couple extracellular stimuli to Ras protein activation have been identified. Furthermore, no novel downstream effectors have been identified for the M-Ras/R-Ras3 GTPase. Here we report the identification and characterization of three Ras family GEFs that are most abundantly expressed in brain. Two of these GEFs, MR-GEF (M-Ras-regulated GEF, KIAA0277) and PDZ-GEF (KIAA0313) bound specifically to nucleotide-free Rap1 and Rap1/Rap2, respectively. Both proteins functioned as Rap1 GEFs in vivo. A third GEF, GRP3 (KIAA0846), activated both Ras and Rap1 and shared significant sequence homology with the calcium- and diacylglycerol-activated GEFs, GRP1 and GRP2. Similarly to previously identified Rap GEFs, C3G and Smg GDS, each of the newly identified exchange factors promoted the activation of Elk-1 in the LNCaP prostate tumor cell line where B-Raf can couple Rap1 to the extracellular receptor-activated kinase cascade. MR-GEF and PDZ-GEF both contain a region immediately N-terminal to their catalytic domains that share sequence homology with Ras-associating or RalGDS/AF6 homology (RA) domains. By searching for in vitro interaction with Ras-GTP proteins, PDZ-GEF specifically bound to Rap1A- and Rap2B-GTP, whereas MR-GEF bound to M-Ras-GTP. C-terminally truncated MR-GEF, lacking the GEF catalytic domain, retained its ability to bind M-Ras-GTP, suggesting that the RA domain is important for this interaction. Co-immunoprecipitation studies confirmed the interaction of M-Ras-GTP with MR-GEF in vivo. In addition, a constitutively active M-Ras(71L) mutant inhibited the ability of MR-GEF to promote Rap1A activation in a dose-dependent manner. These data suggest that M-Ras may inhibit Rap1 in order to elicit its biological effects.  相似文献   

5.
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.  相似文献   

6.
7.
In this study we examine signaling pathways linking the M(1) subtype of muscarinic acetylcholine receptor (M(1) mAChR) to activation of extracellular signal-regulated kinases (ERK) 1 and 2 in neuronal PC12D cells. We first show that activation of ERK1/2 by the M(1) mAChR agonist carbachol takes place primarily via a Ras-independent pathway that depends largely upon Rap1, another small GTP-binding protein in the Ras family. Rap1 in turn activates B-Raf, an upstream activator of ERK1/2. Consistent with these results, carbachol was found to activate Rap1 more potently than Ras. Similar to other small GTP-binding proteins, activation of Rap1 requires a guanine nucleotide exchange factor (GEF) to promote its conversion from the GDP- to GTP-bound form. Using specific antibodies, we show that a recently identified Rap1 GEF, calcium- and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), is expressed in PC12D cells and that carbachol stimulates the formation of a complex containing CalDAG-GEFI, Rap1, and activated B-Raf. Finally, we show that expression of CalDAG-GEFI antisense RNA largely blocks carbachol-stimulated activation of hemagglutinin (HA)1-tagged B-Raf and formation of the CalDAG-GEFI/Rap1/HA1-tagged B-Raf complex. Together, these data define a novel signaling pathway for M(1) mAChR, where increases in Ca(2+) and diacylglycerol stimulate the sequential activation of CalDAG-GEFI, Rap1, and B-Raf, resulting in the activation of MEK and ERK1/2.  相似文献   

8.
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC characterized by possession of CDC25 homology and Ras/Rap1-associating domains. We and others have shown that human PLCepsilon is translocated from the cytoplasm to the plasma membrane and activated by direct association with Ras at its Ras/Rap1-associating domain. In addition, translocation to the perinuclear region was induced upon association with Rap1.GTP. However, the function of the CDC25 homology domain remains to be clarified. Here we show that the CDC25 homology domain of PLCepsilon functions as a guanine nucleotide exchange factor for Rap1 but not for any other Ras family GTPases examined including Rap2 and Ha-Ras. Consistent with this, coexpression of full-length PLCepsilon or its N-terminal fragment carrying the CDC25 homology domain causes an increase of the intracellular level of Rap1.GTP. Concurrently, stimulation of the downstream kinases B-Raf and extracellular signal-regulated kinase is observed, whereas the intracellular level of Ras.GTP and Raf-1 kinase activity are unaffected. In wild-type Rap1-overexpressing cells, epidermal growth factor induces translocation of PLCepsilon to the perinuclear compartments such as the Golgi apparatus, which is sustained for at least 20 min. In contrast, PLCepsilon lacking the CDC25 domain translocates to the perinuclear compartments only transiently. Further, the formation of Rap1.GTP upon epidermal growth factor stimulation exhibits a prolonged time course in cells expressing full-length PLCepsilon compared with those expressing PLCepsilon lacking the CDC25 homology domain. These results suggest a pivotal role of the CDC25 homology domain in amplifying Rap1-dependent signal transduction, including the activation of PLCepsilon itself, at specific subcellular locations such as the Golgi apparatus.  相似文献   

9.
CalDAG-GEFIII activation of Ras, R-ras, and Rap1   总被引:10,自引:0,他引:10  
We characterized a novel guanine nucleotide exchange factor (GEF) for Ras family G proteins that is highly homologous to CalDAG-GEFI, a GEF for Rap1 and R-Ras, and to RasGRP/CalDAG-GEFII, a GEF for Ras and R-Ras. This novel GEF, referred to as CalDAG-GEFIII, increased the GTP/GDP ratio of Ha-Ras, R-Ras, and Rap1 in 293T cells. CalDAG-GEFIII promoted the guanine nucleotide exchange of Ha-Ras, R-Ras, and Rap1 in vitro also, indicating that CalDAG-GEFIII exhibited the widest substrate specificity among the known GEFs for Ras family G proteins. Expression of CalDAG-GEFIII was detected in the glial cells of the brain and the glomerular mesangial cells of the kidney by in situ hybridization. CalDAG-GEFIII activated ERK/MAPK most efficiently, followed by CalDAG-GEFII and CalDAG-GEFI in 293T cells. JNK activation was most prominent in cells expressing CalDAG-GEFII, followed by CalDAG-GEFIII and CalDAG-GEFI. Expression of CalDAG-GEFIII induced neuronal differentiation of PC12 cells and anchorage-independent growth of Rat1A cells less efficiently than did CalDAG-GEFII. Thus, co-activation of Rap1 by CalDAG-GEFIII apparently attenuated Ras-MAPK-dependent neuronal differentiation and cellular transformation. Altogether, CalDAG-GEFIII activated a broad range of Ras family G proteins and exhibited a biological activity different from that of either CalDAG-GEFI or CalDAG-GEFII.  相似文献   

10.
In search for effectors of the Ras-related GTPase Rap2, we used the yeast two-hybrid method and identified the C-terminal Ras/Rap interaction domain of the Ral exchange factors (RalGEFs) Ral GDP dissociation stimulator (RalGDS), RalGDS-like (RGL), and RalGDS-like factor (Rlf). These proteins, which also interact with activated Ras and Rap1, are effectors of Ras and mediate the activation of Ral in response to the activation of Ras. Here we show that the full-length RalGEFs interact with the GTP-bound form of Rap2 in the two-hybrid system as well as in vitro. When co-transfected in HeLa cells, an activated Rap2 mutant (Rap2Val-12) but not an inactive protein (Rap2Ala-35) co-immunoprecipitates with RalGDS and Rlf; moreover, Rap2-RalGEF complexes can be isolated from the particulate fraction of transfected cells and were localized by confocal microscopy to the resident compartment of Rap2, i.e. the endoplasmic reticulum. However, the overexpression of activated Rap2 neither leads to the activation of the Ral GTPase via RalGEFs nor inhibits Ras-dependent Ral activation in vivo. Several hypotheses that could explain these results, including compartmentalization of proteins involved in signal transduction, are discussed. Our results suggest that in cells, the interaction of Rap2 with RalGEFs might trigger other cellular responses than activation of the Ral GTPase.  相似文献   

11.
PDZ-GEF1 (RA-GEF/nRapGEP/CNrasGEF) is a guanine nucleotide exchange factor (GEF) characterised by the presence of a PSD-95/DlgA/ZO-1 (PDZ) domain, a Ras-association (RA) domain and a region related to a cyclic nucleotide binding domain (RCBD). These domains are in addition to a Ras exchange motif (REM) and GEF domain characteristic for GEFs for Ras-like small GTPases. PDZ-GEF1 efficiently exchanges nucleotides of both Rap1 and Rap2, but has also been implicated in mediating cAMP-induced Ras activation through binding of cAMP to the RCBD. Here we describe a new family member, PDZ-GEF2, of which we isolated two splice variants (PDZ-GEF2A and 2B). PDZ-GEF2 contains, in addition to the domains characteristic for PDZ-GEF1, a second, less conserved RCBD at the N-terminus. PDZ-GEF2 is also specific for both Rap1 and Rap2. We further investigated the possibility that PDZ-GEF2, like PDZ-GEF1, is a cAMP-responsive GEF for Ras. However, in contrast to previous results, we did not find any effect of either PDZ-GEF1 or PDZ-GEF2 on Ras in the absence or presence of cAMP. Moreover, affinity measurements by isothermic calorimetry showed that the RCBD of PDZ-GEF1 does not bind cAMP with a physiologically relevant affinity. We conclude that both PDZ-GEF1 and 2 are specific for Rap1 and Rap2 and unresponsive to cAMP and various other nucleotides.  相似文献   

12.
A multitude of guanine nucleotide exchange factors (GEFs) regulate Rap1 small GTPases, however, their individual functions remain obscure. Here, we investigate the in vivo function of the Rap1 GEF RA-GEF-1. The expression of RA-GEF-1 in wild-type mice starts at embryonic day (E) 8.5, and continues thereafter. RA-GEF-1(-/-) mice appear normal until E7.5, but become grossly abnormal and dead by E9.5. This mid-gestation death appears to be closely associated with severe defects in yolk sac blood vessel formation. RA-GEF-1(-/-) yolk sacs form apparently normal blood islands by E8.5, but the blood islands fail to coalesce into a primary vascular plexus, indicating that vasculogenesis is impaired. Furthermore, RA-GEF-1(-/-) embryos proper show severe defects in the formation of major blood vessels. These results suggest that deficient Rap1 signaling may lead to defective vascular morphogenesis in the yolk sac and embryos proper.  相似文献   

13.
The Ras-like family of small GTPases includes, among others, Ras, Rap1, R-ras, and Ral. The family is characterized by similarities in the effector domain. While the function of Ras is, at least in part, elucidated, little is known about other members of the family. Currently, much attention is focused on the small GTPase Rap1. Initially, this member was identified as a transformation suppressor protein able to revert the morphological phenotype of Ras-transformed fibroblasts. This has led to the hypothesis that Rap1 antagonizes Ras by interfering in Ras effector function. Recent analysis revealed that Rap1 is activated rapidly in response to activation of a variety of receptors. Rap1 activation is mediated by several second messengers, including calcium, diacylglycerol, and cAMP. Guanine nucleotide exchange factors (GEFs) have been identified that mediate these effects. The most interesting GEF is Epac, an exchange protein directly activated by cAMP, thus representing a novel cAMP-induced, protein kinase A-independent pathway. Furthermore, Rap1 is inactivated by specific GTPase-activating proteins (GAPs), one of which is regulated through an interaction with Galphai. While Ras and Rap1 may share some effector pathways, evidence is accumulating that Ras and Rap1 each regulate unique cellular processes in response to various extracellular ligands. For Rap1 these functions may include the control of cell morphology.  相似文献   

14.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

15.
Small GTPase Rap1 has been implicated in the proper differentiation of testicular germ cells. In the present study, we investigated the functional significance of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in testicular differentiation using mice lacking RA-GEF-2. RA-GEF-2 was expressed predominantly on the luminal side of the seminiferous tubules in wild-type mice. No significant differences were observed in the body weights or hormonal parameters of RA-GEF-2/ and wild-type mice. However, the testes of RA-GEF-2/ male mice were significantly smaller than those of wild-type mice and were markedly atrophied as well as hypospermatogenic. The concentration and motility of epididymal sperm were also markedly reduced and frequently had an abnormal shape. The pregnancy rate and number of fetuses were markedly lower in wild-type females after they mated with RA-GEF-2/ males than with wild-type males, which demonstrated the male infertility phenotype of RA-GEF-2/ mice. Furthermore, a significant reduction and alteration were observed in the expression level and cell junctional localization of N-cadherin, respectively, in RA-GEF-2/ testes, which may, at least in part, account for the defects in testicular differentiation and spermatogenesis in these mice.  相似文献   

16.
17.
Epidermal growth factor (EGF) activates Ras and Rap1 at distinct intracellular regions. Here, we explored the mechanism underlying this phenomenon. We originally noticed that in cells expressing Epac, a cAMP-dependent Rap1 GEF (guanine nucleotide exchange factor), cAMP activated Rap1 at the perinuclear region, as did EGF. However, in cells expressing e-GRF, a recombinant cAMP-responsive Ras GEF, cAMP activated Ras at the peripheral plasma membrane. Based on the uniform cytoplasmic expression of Epac and e-GRF, GEF did not appear to account for the non-uniform increase in the activities of Ras and Rap1. In contrast, when we used probes with reduced sensitivity to GTPase-activating proteins (GAPs), both Ras and Rap1 appeared to be activated uniformly in the EGF-stimulated cells. Furthermore, we calculated the local rate constants of GEFs and GAPs from the video images of Ras activation and found that GAP activity was higher at the central plasma membrane than the periphery. Thus we propose that GAP primarily dictates the spatial regulation of Ras family G proteins, whereas GEF primarily determines the timing of Ras activation.  相似文献   

18.
E-cadherin based adherens junctions are finely regulated by multiple cellular signaling events. Here we show that the Ras-related Rap1 GTPase is enriched in regions of nascent cell-cell contacts and strengthens E-cadherin junctions: constitutively active Rap1 expressing MDCK cells exhibit increased junctional contact and resisted calcium depletion-induced cell-cell junction disruption. E-cadherin disengagement activated Rap1 and this correlated with E-cadherin association with the Rap GEFs, C3G and PDZ-GEF I. PDZ-GEF I associated with E-cadherin and beta-catenin whereas C3G interaction with E-cadherin did not involve beta-catenin. Knockdown of PDZ-GEF I in MDCK cells decreased Rap1 activity following E-cadherin junction disruption. We hereby show that Rap1 plays a role in the maintenance and repair of E-cadherin junctions and is activated via an "outside-in" signaling pathway initiated by E-cadherin and mediated at least in part by PDZ-GEF I.  相似文献   

19.
The small GTPase Rap1 has been implicated in a variety of cellular processes including the control of cell morphology, proliferation, and differentiation. Stimulation of a large variety of cell surface receptors results in the rapid activation of Rap1, i.e. an increase in the GTP-bound form. This activation is mediated by second messengers like calcium, cAMP, and diacylglycerol, but additional pathways may exist as well. Here we describe a ubiquitously expressed guanine nucleotide exchange factor of 200 kDa that activates Rap1 both in vivo and in vitro. This exchange factor has two putative regulatory domains: a domain with an amino acid sequence related to cAMP-binding domains and a PDZ domain. Therefore, we named it PDZ-GEF1. PDZ-GEFs are closely related to Epacs, Rap-specific exchange factors with a genuine cAMP binding site, that are directly regulated by cAMP. The domain related to cAMP-binding domains, like the cAMP binding site in Epac, serves as a negative regulatory domain. However, PDZ-GEF1 does not interact with cAMP or cGMP. Interestingly, PDZ-GEF1 also activates Rap2, a close relative of Rap1. This is the first example of an exchange factor acting on Rap2. We conclude that PDZ-GEF1 is a guanine nucleotide exchange factor, specific for Rap1 and Rap2, that is controlled by a negative regulatory domain.  相似文献   

20.
Takala H  Ylänne J 《PloS one》2012,7(4):e31955
The Rap1-GTP interacting adapter protein (RIAM) is an important protein in Rap1-mediated integrin activation. By binding to both Rap1 GTPase and talin, RIAM recruits talin to the cell membrane, thus facilitating talin-dependent integrin activation. In this article, we studied the role of the RIAM Ras-association (RA) and pleckstrin-homology (PH) domains in the interaction with Rap1. We found that the RA domain was sufficient for GTP-dependent interaction with Rap1B, and the addition of the PH domain did not change the binding affinity. We also detected GTP-independent interaction of Rap1B with the N-terminus of RIAM. In addition, we found that the PH domain stabilized the RA domain both in vitro and in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号