首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis, spectroscopic properties and intracellular imaging of recombinant antibody single chain fragment (scFv) conjugates with photosensitizers used for photodynamic therapy of cancer (PDT). Two widely-studied photosensitizers have been selected: preclinical pyropheophorbide-a (PPa) and verteporfin (VP), which has been clinically approved for the treatment of acute macular degeneration (Visudyne). Pyropheophorbide-a and verteporfin have been conjugated to an anti-HER2 scFv containing on average ten photosensitizer molecules per scFv with a small contribution (相似文献   

2.
Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2 + AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate.  相似文献   

3.
Phthalocyanine-nanoparticle conjugates have been designed and synthesised for the delivery of hydrophobic photosensitizers for photodynamic therapy (PDT) of cancer. The phthalocyanine photosensitizer stabilized gold nanoparticles have an average diameter of 2-4 nm. The synthetic strategy interdigitates a phase transfer reagent between phthalocyanine molecules on the particle surface that solubilises the hydrophobic photosensitizer in polar solvents enabling delivery of the nanoparticle conjugates to cells. The phthalocyanine is present in the monomeric form on the nanoparticle surface, absorbs radiation maximally at 695 nm and catalytically produces the cytotoxic species singlet oxygen with high efficiency. These properties suggest that the phthalocyanine-nanoparticle conjugates are ideally suited for PDT. In a process that can be considered as cancer therapy using a 'Trojan horse', when the nanoparticle conjugates are incubated with HeLa cells (a cervical cancer cell line), they are taken up thus delivering the phthalocyanine photosensitizer directly into the cell interior. Irradiation of the nanoparticle conjugates within the HeLa cells induced substantial cell mortality through the photodynamic production of singlet oxygen. The PDT efficiency of the nanoparticle conjugates, determined using colorimetric assay, was twice that obtained using the free phthalocyanine derivative. Following PDT with the nanoparticle conjugates, morphological changes to the HeLa cellular structure were indicative of cell mortality via apoptosis. Further evidence of apoptosis was provided through the bioluminescent assay detection of caspase 3/7. Our results suggest that gold nanoparticle conjugates are an excellent vehicle for the delivery of surface bound hydrophobic photosensitizers for efficacious photodynamic therapy of cultured tumour cells.  相似文献   

4.
Methotrexate accumulation, subcellular distribution, metabolism, and cytotoxicity were studied in human epidermoid carcinoma (KB) cells that were exposed to a low extracellular concentration of methotrexate (25 nM) following culture in widely differing concentrations of folic acid. KB cells cultured in standard medium with a high folic acid concentration (2.3 microM) had high levels of cellular folate (21.4 pmol/10(6) cells). Five passages through low folate (2.7 nM) medium reduced the level of cellular folate to near physiologic levels (0.4-1.0 pmol/10(6) cells). In contrast to KB cells cultured in standard medium, in KB cells cultured in low folate medium, 1) methotrexate inhibited growth; 2) methotrexate uptake was markedly increased; 3) methotrexate polyglutamation was almost complete; 4) methotrexate binding to dihydrofolate reductase was markedly enhanced; and 5) significant methotrexate binding to a previously undescribed membrane-associated protein occurred. The amount of methotrexate bound to the membrane-associated protein from KB cells cultured in low folate medium equaled the quantities bound by dihydrofolate reductase. Further characterization of this membrane-associated protein indicated that it was soluble in solutions containing Triton X-100, was capable of binding folic acid as well as methotrexate, had an apparent Mr of 160,000 by gel filtration in the presence of Triton X-100, and was precipitated by antiserum to human placental folate receptor. This membrane-associated protein may play an important role in the uptake and metabolism of methotrexate under physiologic conditions.  相似文献   

5.
Six water-soluble free-base porphyrin-Ru(II) conjugates, 1-3, and Zn(II) porphyrin-Ru(II) conjugates, 4-6, with different linkers between the hydrophobic porphyrin moiety and the hydrophilic Ru(II)-polypyridyl complex, have been synthesized. The linear and two-photon-induced photophysical properties of these conjugates were measured and evaluated for their potential application as dual in vitro imaging and photodynamic therapeutic (PDT) agents. Conjugates 1-3, with their high luminescence and singlet oxygen quantum yields, were selected for further study of their cellular uptake, subcellular localization, and cytotoxic and photocytotoxic (under linear and two-photon excitation) properties using HeLa cells. Conjugate 2, with its hydrophobic phenylethynyl linker, was shown to be highly promising for further development as a bifunctional probe for two-photon (NIR) induced PDT and in vitro imaging. Cellular uptake and subcellular localization properties were shown to be crucial to its PDT efficacy.  相似文献   

6.
Li F  Na K 《Biomacromolecules》2011,12(5):1724-1730
Acetylated-chondroitin sulfate/chlorin e6 conjugates (Ac-CS/Ce6 1, 2, 3) were synthesized via the formation of an ester linkage between CS and Ce6 and evaluated as nanoscale drugs for photodynamic therapy. Ac-CS/Ce6 2 and 3 with higher Ce6 contents of 11.7 and 17.6%, respectively, had average diameters of <150 nm and were very stable in phosphate-buffered saline (PBS) for 1 month. The critical self-quenching concentration (CQC) of Ac-CS/Ce6 decreased as the conjugated-amount of Ce6 increased. All samples displayed autophotoquenching properties in aqueous solution, whereas their fluorescence intensity strongly correlated with the amount of Ce6 in the organic solvent dimethyl sulfoxide (DMSO). Compared with free Ce6, Ac-CS/Ce6 nanodrug photoactivity was maintained in terms of fluorescence properties and singlet oxygen ((1)O(2)) generation. In a HeLa cell culture system, we observed rapid cellular uptake of the Ac-CS/Ce6 nanodrug without any other ligands using confocal imaging and fluorescence-activated cell sorting (FACS) analysis. Upon light irradiation following cellular uptake, phototoxicity was detected via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The self-quenching effect and fluorescence recovery of Ac-CS/Ce6 were also determined both in vitro and in vivo. Taken together, our results indicate that Ac-CS/Ce6 has potential as an effective photodynamic therapy (PDT) prodrug for clinical application.  相似文献   

7.
光动力学疗法剂量学的研究进展   总被引:3,自引:0,他引:3  
随着光动力学疗法 ( photodynamic therapy,PDT ) 基础研究的不断深入和临床应用的广泛开展,如何精确量化光动力剂量,并根据患者的个体差异进行剂量的实时调整和优化已成为亟待解决的挑战性难题,属PDT研究的前沿热点.综述了现有PDT剂量学研究方法及其相应检测技术的研究进展,其中包括:a.测定光通量密度、光敏剂浓度和氧分压;b.测量光敏剂的光漂白速率和光致产物;c.监测PDT前后组织的光生物学响应;d.检测单态氧在1 270 nm的近红外发光.同时,还分析了这些PDT剂量学方法的优点和局限性.最后,讨论了PDT剂量学研究中所面临的挑战.  相似文献   

8.
Au nanorods (AuNRs) have attracted considerable interest as drug delivery systems because of their enhanced cell internalization and stronger drug-loading ability. In addition, the incorporation of photodynamic therapy (PDT) and photothermal therapy (PTT) into one nanosystem presents great promise to defect multiple drawbacks in cancer therapy. Herein, we fabricated a multifunctional and dual-targeting nanoplatform based on hyaluronic acid-grafted-(mPEG/triethylenetetramine-conjugated-lipoic acid/tetra(4-carboxyphenyl)porphyrin/folic acid) polymer ligand capped AuNRs (AuNRs@HA-g-(mPEG/Teta-co-(LA/TCPP/FA)) for combined photodynamic–photothermal therapy of cancer. The prepared nanoparticles displayed high TCPP loading capacity and excellent stability in different biological media. Furthermore, AuNRs@HA-g-(mPEG/Teta-co-(LA/TCPP/FA)) not only could produce a localized hyperthermia to conduct PTT, but also generate cytotoxic singlet oxygen (1O2) to perform PDT under laser irradiation. Confocal imaging results disclosed that this nanoparticle endowing the specific function of polymeric ligand could enhance cellular uptake, accelerate endo/lysosomal escape, as well as produce higher reactive oxygen species. Importantly, this combination therapy strategy could also induce higher anticancer potential than PDT or PTT only against MCF-7 tumor cells in vitro. Therefore, this work presented an AuNRs-based therapeutic nanoplatform with great potential in dual-targeting and photo-induced combination therapy of cancer.  相似文献   

9.
Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670 nm, energy density of 4.5 J/cm2 and power density of 45 mW/cm2. Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton.  相似文献   

10.
Successful treatment of cancer by boron neutron capture therapy (BNCT) requires the selective delivery of (10)B to constituent cells within a tumor. The expression of the folate receptor is amplified in a variety of human tumors and potentially might serve as a molecular target for BNCT. In the present study we have investigated the possibility of targeting the folate receptor on cancer cells using folic acid conjugates of boronated poly(ethylene glycol) (PEG) containing 3rd generation polyamidoamine dendrimers to obtain (10)B concentrations necessary for BNCT by reducing the uptake of these conjugates by the reticuloendothelial system. First we covalently attached 12-15 decaborate clusters to 3rd generation polyamidoamine dendrimers. Varying quantities of PEG units with varying chain lengths were then linked to these boronated dendrimers to reduce hepatic uptake. Among all prepared combinations, boronated dendrimers with 1-1.5 PEG(2000) units exhibited the lowest hepatic uptake in C57BL/6 mice (7.2-7.7% injected dose (ID)/g liver). Thus, two folate receptor-targeted boronated 3rd generation polyamidoamine dendrimers were prepared, one containing approximately 15 decaborate clusters and approximately 1 PEG(2000) unit with folic acid attached to the distal end, the other containing approximately 13 decaborate clusters, approximately 1 PEG(2000) unit, and approximately 1 PEG(800) unit with folic acid attached to the distal end. In vitro studies using folate receptor (+) KB cells demonstrated receptor-dependent uptake of the latter conjugate. Biodistribution studies with this conjugate in C57BL/6 mice bearing folate receptor (+) murine 24JK-FBP sarcomas resulted in selective tumor uptake (6.0% ID/g tumor), but also high hepatic (38.8% ID/g) and renal (62.8% ID/g) uptake, indicating that attachment of a second PEG unit and/or folic acid may adversely affect the pharmacodynamics of this conjugate.  相似文献   

11.
The efficacy of new porphyrin amino acid conjugates as photosensitizers for photodynamic therapy (PDT) were assayed in vitro on tumoral (HeLa) and on non tumoral (HaCaT) human cell lines. The conjugates stable in liposomes are able to penetrate efficiently in the cytoplasm of cultured cancer and normal cells. No dark cytotoxicity is observed at the same concentration used for PDT cell treatment and during long incubation time (24 h). The cell survival after the PDT treatment with visible light is dependent upon light exposure level and compound concentration. The tested compounds show higher photocytotoxicity in tumoral HeLa cells than in no tumoral HaCaT cells. The results suggest that these amino acid porphyrin conjugates are potential photosensitizers for PDT.  相似文献   

12.
The uptake of methotrexate by KB cells was observed to be dependent on time, temperature, and concentration of extracellular methotrexate. The Kd for methotrexate surface binding to KB cells was approximately 200 nM. Following exposure of KB cells to trace quantities of [3H]methotrexate for periods ranging from 6 min to 24 h, the cellular methotrexate was progressively formed into methotrexate polyglutamates and was bound to dihydrofolate reductase as well as to a particulate folate binding protein. To further study the mechanism of methotrexate uptake in KB cells, the N-hydroxysuccinimide ester of methotrexate was used to covalently label the surface of KB cells and to inhibit transport of methotrexate. The N-hydroxysuccinimide ester of methotrexate was bound to a species of protein with an apparent molecular weight of 160,000 in 1% (v/v) Triton X-100 that bound folic acid and was specifically precipitated by antiserum raised against the previously purified high-affinity folate binding protein (the folate receptor) from human KB cells. In addition, trypsin was utilized to remove surface-accessible covalently bound methotrexate. The amount of covalently bound methotrexate that could be released by trypsin initially decreased on incubation at 37 degrees C, suggesting that the methotrexate and binding protein were internalized. However, with time, trypsin could again release the covalently bound methotrexate, suggesting that the binding protein cycles from the external cell surface to the inside of the cell and out again.  相似文献   

13.
Semitelechelic HPMA (N-(2-hydroxypropyl)methacrylamide) copolymers possessing a single terminal lipophilic triphenylphosphonium (TPP) cation and fluorescent labels were synthesized to determine how the attached cation affected cellular uptake and intracellular trafficking. In vitro mitochondrial uptake fluorescence quenching assays using isolated mouse liver mitochondria indicated that only lower molecular weight (<5 kDa) BODIPY FL-labeled TPP-semitelechelic HPMA copolymers exhibited significant organelle localization or uptake. In vitro cellular uptake and intracellular trafficking was evaluated using cultured human ovarian carcinoma cells. Cells incubated with all types of TPP copolymers used in the study appeared to internalize the polymer by endocytosis only, and all of the internalized copolymer was confined to the lysosomal compartment after 24 h. Endocytotic uptake of the TPP-HPMA copolymer conjugates was rapid, suggesting that they were internalized by adsorptive endocytosis, rather than fluid-phase pinocytosis. Low-molecular weight (<5 kDa) and high-molecular weight (>5 kDa) semitelechelic copolymers, microinjected into cultured cells indicated that the TPP moiety did not significantly localize the polymers to mitochondria.  相似文献   

14.
Aiming to develop selective anticancer drugs, we designed and synthesized three disulfides bearing a folic acid moiety as candidate folate receptor (FR)-targeted prodrugs of thiolate histone deacetylase inhibitors. Among them, compound 1 displayed growth-inhibitory activity toward folate receptor-positive MCF-7 breast cancer cells. The activity of 1 was significantly reduced by free folic acid, suggesting that cellular uptake of 1 is mediated by FR.  相似文献   

15.
Photodynamic treatment (PDT) employs a photosensitizer and the light-induced formation of reactive oxygen species--antagonized by cellular antioxidant systems--for the removal of harmful cells. This study addresses the effect of altered carbohydrate metabolism on the cellular antioxidant glutathione system, and the subsequent responses to PDT. It is shown that glucose-deprivation of 18 h prior to PDT causes a reduced level of intracellular glutathione and an increased cytotoxicity of PDT. These effects can be mimicked by inhibitors of glutathione synthesis (buthionine-sulfoximine) or its regeneration (1,3-bis-(2-chlorethyl)-1-nitrosourea). Inhibited glutathione metabolism shifts the apoptotic window to lower fluences, while glucose deprivation abolishes apoptosis as a result of ATP deficiency. Our results prove evidence for manipulation of the outcome of PDT through internal metabolic pathways.  相似文献   

16.
Conjugation of boron nanoparticles with porphyrins is an attractive way to create dual agents for anticancer boron neutron capture therapy (BNCT) and photodynamic therapy (PDT). Properties of chlorin e(6) conjugated with two cobalt bis(dicarbollide) nanoparticles (1) or with a closo-dodecaborate nanoparticle (2) are reported. Fluorescent dianionic conjugates 1 and 2 penetrate in A549 human lung adenocarcinoma cells, stain cytoplasm diffusely and accumulate highly in lysosomes but are not toxic themselves for cells. Average cytoplasmic concentration of boron atoms (B) achieves 270 μM (ca. 2 × 10(8) B/cell) and 27 μM (ca. 2 × 10(7) B/cell) at the 1.5 μM extracellular concentration of 1 and 2, respectively, that makes conjugate 1 especially suitable for BNCT. Conjugate 2 causes photoinduced cell death at micromolar concentrations and can be considered also as a photosensitizer for PDT. Conjugates 1 and 2 have high quantum yields of singlet oxygen generation (0.55 and 0.85 in solution, respectively), identical intracellular localization and similar lipid-like microenvironment but conjugate 1 possesses no photoinduced cytotoxicity. A presence of cobalt complexes in conjugate 1 is supposed to be a reason of the observed antioxidative effect in cellular environment, but an exact mechanism of this intriguing phenomenon is unclear. Due to increased intracellular accumulation and absence of photoinduced cytotoxicity conjugate 1 is promising for fluorescence diagnostics of cancer.  相似文献   

17.
To develop a highly efficient photosensitizer for photodynamic therapy (PDT), we have designed and synthesized a phthalocyanine-lactose conjugate (Pc-Lac) through axial modification of silicon(IV) phthalocyanine with lactose moieties. With the lactose substituents, Pc-Lac is highly hydrophilic and non-aggregated with efficient reactive oxygen species (ROS) generation in aqueous media. With these desirable properties, Pc-Lac shows high photocytotoxicity and cellular uptake toward HepG2 cells. In addition, in vivo fluorescence imaging shows that Pc-Lac could selectively remain at tumor site, leading to its enhanced photodynamic efficacy against H22 tumor-bearing mice. Therefore, Pc-Lac shows a great potential as a highly efficient molecular photosensitizer for PDT.  相似文献   

18.
Hypericin in cancer treatment: more light on the way   总被引:16,自引:0,他引:16  
Photodynamic therapy (PDT) has been described as a promising new modality for the treatment of cancer. PDT involves the combination of a photosensitizing agent (photosensitizer), which is preferentially taken up and retained by tumor cells, and visible light of a wavelength matching the absorption spectrum of the drug. Each of these factors is harmless by itself, but when combined they ultimately produce, in the presence of oxygen, cytotoxic products that cause irreversible cellular damage and tumor destruction. Hypericin, a powerful naturally occurring photosensitizer, is found in Hypericum perforatum plants, commonly known as St. John's wort. In recent years increased interest in hypericin as a potential clinical anticancer agent has arisen since several studies established its powerful in vivo and in vitro antineoplastic activity upon irradiation. Investigations of the molecular mechanisms underlying hypericin photocytotoxicity in cancer cells have revealed that this photosensitizer can induce both apoptosis and necrosis in a concentration and light dose-dependent fashion. Moreover, PDT with hypericin results in the activation of multiple pathways that can either promote or counteract the cell death program. This review focuses on the more recent advances in the use of hypericin as a photodynamic agent and discusses the current knowledge on the signaling pathways underlying its photocytotoxic action.  相似文献   

19.
Synthesis of N-acetyl-D-galactosamine and folic acid conjugated ribozymes   总被引:1,自引:0,他引:1  
To evaluate potential improvement in tissue specific targeting and cellular uptake of therapeutic ribozymes, we have developed three new phosphoramidite reagents. These reagents can be used in automated solid-phase synthesis to produce oligonucleotide conjugates containing N-acetyl-D-galactosamine (targeting hepatocytes) and folic acid (targeting tumor). N-Acetyl-D-galactosamine was attached through a linker to both 2'-amino-2'-deoxyuridine and D-threoninol scaffolds, and these conjugates were converted to phosphoramidite building blocks. Incorporation of a D-threoninol-based monomer into ribozymes provided multiply labeled ribozyme conjugates. Attachment of the fully protected pteroic acid to the D-threoninol-6-aminocaproyl-L-glutamic acid construct afforded the folic acid conjugate, which was converted into the phosphoramidite and incorporated onto the 5'-end of the ribozyme.  相似文献   

20.
Asymmetrical glycoconjugated tetrapyrrolic macrocycles are under study as efficient sensitizers for photodynamic therapy (PDT). In this context, tri(meta-O-beta-glucopyranosyloxyphenyl)chlorin [TPC(m-O-Glu)(3)] 2a/3a was found to be four times more photoactive in vitro than Foscan. In a further study of this interesting glycoconjugate, its metabolism by cellular glycosidases in HT29 cells has to be explored. Cellular extracts of HT29 cells incubated with TPC(m-O-Glu)(3) (24h, 6microM) were analyzed by MALDI-TOF mass spectrometry and high performance liquid chromatography (HPLC). In MALDI-TOF mass spectra, the presence of compounds distinct from TPC(m-O-Glu)(3) (m/z 1151) were observed at m/z 989, 827 and 665 corresponding to the loss of one, two or three glucose units (162u) and were be ascribed to TPC(m-OH)(m-O-Glu)(2) 2/3b,b',b", TPC(m-OH)(2)(m-O-Glu) 2/3c,c',c" and TPC(m-OH)(3) isomers 2d/3d, respectively. The porphyrins resulting from chlorin oxidation TPP(m-O-Glu)(3) 4a, TPP(m-OH)(m-O-Glu)(2) 4b,b", TPP(m-OH)(2)(m-O-Glu) 4c,c" and TPP(m-OH)(3) 4d were also observed. The HPLC profile (lambda(anal)=420 nm) showed eight peaks consistent with mass spectra. The kinetics of deglucosylation was studied from HPLC profiles between 1 and 48h incubation. The concentration of triglucoconjugated and diglucoconjugated molecules was maximum around 3 and 8h incubation, respectively, whereas, totally deglucosylated species appeared only after incubation for more than 10h. The fully deglycosylated porphyrin TPP(m-OH)(3) is the final metabolite, being observed at a concentration 15 times higher than that of the remaining TPC(m-O-Glu)(3) 2a/3a. Compared to the photobiological activity of the parent molecule [TPC(m-O-Glu)(3)], a three times higher TPP(m-OH)(3) concentration was necessary to observe a similar in vitro photoactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号