首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is clearly established that an efficient supply to the brain of alpha-tocopherol (alphaTocH), the most biologically active member of the vitamin E family, is of the utmost importance for proper neurological functioning. Although the mechanism of uptake of alphaTocH into cells constituting the blood-brain barrier (BBB) is obscure, we previously demonstrated that high-density lipoprotein (HDL) plays a major role in the supply of alphaTocH to porcine brain capillary endothelial cells (pBCECs). Here we studied whether a porcine analogue of human and rodent scavenger receptor class B, type I mediates selective (without concomitant lipoprotein particle internalization) uptake of HDL-associated alphaTocH in a similar manner to that described for HDL-associated cholesteryl esters (CEs). In agreement with this hypothesis we observed that a major proportion of alphaTocH uptake by pBCECs occurred by selective uptake, exceeding HDL3 holoparticle uptake by up to 13-fold. The observation that selective uptake of HDL-associated CE exceeded HDL3 holoparticle up to fourfold suggested that a porcine analogue of SR-BI (pSR-BI) may be involved in lipid uptake at the BBB. In line with the observation of selective lipid uptake, RT-PCR and northern and western blot analyses revealed the presence of pSR-BI in cells constituting the BBB. Adenovirus-mediated overexpression of the human analogue of SR-BI (hSR-BI) in pBCECs resulted in a fourfold increase in selective HDL-associated alphaTocH uptake. In accordance with the proposed function of SR-BI, selective HDL-CE uptake was increased sixfold in Chinese hamster ovary cells stably transfected with murine SR-BI (mSR-BI). Most importantly stable mSR-BI overexpression mediated a twofold increase in HDL-associated [14C]alphaTocH selective uptake in comparison with control cells. In line with tracer experiments, mass transfer studies with unlabelled lipoproteins revealed that mSR-BI overexpression resulted in a twofold increase in endogenous HDL3-associated alphaTocH uptake. The results of this study indicate that SR-BI promotes the uptake of HDL-associated alphaTocH into cells constituting the BBB and plays an important role during the supply of the CNS with this indispensable micronutrient.  相似文献   

2.
From the severe neurological syndromes resulting from vitamin E deficiency, it is evident that an adequate supply of the brain with alpha-tocopherol (alphaTocH), the biologically most active member of the vitamin E family, is of utmost importance. However, uptake mechanisms of alphaTocH in cells constituting the blood-brain barrier are obscure. Therefore, we studied the interaction of low (LDL) and high (HDL) density lipoproteins (the major carriers of alphaTocH in the circulation) with monolayers of primary porcine brain capillary endothelial cells (pBCECs) and compared the ability of these two lipoprotein classes to transfer lipoprotein-associated alphaTocH to pBCECs. With regard to potential binding proteins, we could identify the presence of the LDL receptor and a putative HDL3 binding protein with an apparent molecular mass of 100 kDa. At 4 degrees C, pBCECs bound LDL with high affinity (K(D) = 6 nM) and apolipoprotein E-free HDL3 with low affinity (98 nM). The binding capacity was 20,000 (LDL) and 200,000 (HDL3) lipoprotein particles per cell. alphaTocH uptake was approximately threefold higher from HDL3 than from LDL when [14C]alphaTocH-labeled lipoprotein preparations were used. The majority of HDL3-associated alphaTocH was taken up in a lipoprotein particle-independent manner, exceeding HDL3 holoparticle uptake 8- to 20-fold. This uptake route is less important for LDL-associated alphaTocH (alphaTocH uptake approximately 1.5-fold higher than holoparticle uptake). In line with tracer experiments, mass transfer studies with unlabeled lipoproteins revealed that alphaTocH uptake from HDL3 was almost fivefold more efficient than from LDL. Biodiscrimination studies indicated that uptake efficacy for the eight different stereoisomers of synthetic alphaTocH is nearly identical. Our findings indicate that HDL could play a major role in supplying the central nervous system with alphaTocH in vivo.  相似文献   

3.
The present study aimed to investigate pathways that contribute to uptake and transcytosis of high-density lipoproteins (HDLs) and HDL-associated alpha-tocopherol (alpha TocH) across an in vitro model of the blood-brain barrier (BBB). In primary porcine brain capillary endothelial cells HDL-associated alpha TocH was taken up in 10-fold excess of HDL holoparticles, indicating efficient selective uptake, a pathway mediated by scavenger receptor class B, type I (SR-BI). SR-BI was present in caveolae of brain capillary endothelial cells and expressed almost exclusively at the apical membrane. Disruption of caveolae with methyl-beta-cyclodextrin (CDX) resulted in (mis)sorting of SR-BI to the basolateral membrane. Immunohistochemistry of porcine brain cryosections revealed SR-BI expression on brain capillary endothelial cells and presumably astrocytic endfeet. HDL-associated [(14)C]alpha TocH taken up by brain capillary endothelial cells was recovered in sucrose gradient fractions containing the majority of cellular caveolin-1, the major caveolae-associated protein. During mass transfer studies using alpha TocH-enriched HDL, approximately 50% of cellular alpha TocH was recovered with the bulk of cellular caveolin-1 and SR-BI. Efflux experiments revealed that a substantial amount of cell-associated [(14)C]alpha TocH could be mobilized into the culture medium. In addition, apical-to-basolateral transport of HDL holoparticles and HDL-associated alpha TocH was saturable. Results from the present study suggest that part of cerebral apolipoprotein A-I and alpha TocH originates from plasma HDL transcytosed across the BBB and that caveolae-located SR-BI facilitates selective uptake of HDL-associated alpha TocH at the BBB.  相似文献   

4.
Lipoprotein lipase (LpL) hydrolyzes chylomicron and very low density lipoprotein triglycerides to provide fatty acids to tissues. Aside from its lipolytic activity, LpL promotes lipoprotein uptake by increasing the association of these particles with cell surfaces allowing for the internalization by receptors and proteoglycans. Recent studies also indicate that LpL stimulates selective uptake of lipids from high density lipoprotein (HDL) and very low density lipoprotein. To study whether LpL can mediate selective uptake of lipids from low density lipoprotein (LDL), LpL was incubated with LDL receptor negative fibroblasts, and the uptake of LDL protein, labeled with (125)I, and cholesteryl esters traced with [(3)H]cholesteryl oleoyl ether, was compared. LpL mediated greater uptake of [(3)H]cholesteryl oleoyl ether than (125)I-LDL protein, a result that indicated selective lipid uptake. Lipid enrichment of cells was confirmed by measuring cellular cholesterol mass. LpL-mediated LDL selective uptake was not affected by the LpL inhibitor tetrahydrolipstatin but was nearly abolished by heparin, monoclonal anti-LpL antibodies, or chlorate treatment of cells and was not found using proteoglycan-deficient Chinese hamster ovary cells. Selective uptake from HDL, but not LDL, was 2-3-fold greater in scavenger receptor class B type I overexpressing cells (SR-BI cells) than compared control cells. LpL, however, induced similar increases in selective uptake from LDL and HDL in either control or SR-BI cells, indicative of the SR-BI-independent pathway. This was further supported by ability of LpL to promote selective uptake from LDL in human embryonal kidney 293 cells, cells that do not express SR-BI. In Chinese hamster ovary cell lines that overexpress LpL, we also found that selective uptake from LDL was induced by both endogenous and exogenous LpL. Transgenic mice that overexpress human LpL via a muscle creatine kinase promoter had more LDL selective uptake in muscle than did wild type mice. In summary LpL stimulates selective uptake of cholesteryl esters from LDL via pathways that are distinct from SR-BI. Moreover this process also occurs in vivo in tissues where abundant LpL is present.  相似文献   

5.
Scavenger receptor, class B, type I (SR-BI) is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein cholesteryl ester (CE) without the concomitant uptake and degradation of the particle. We have investigated the endocytic and selective uptake of low density lipoprotein (LDL)-CE by SR-BI using COS-7 cells transiently transfected with mouse SR-BI. Analysis of lipoprotein uptake data showed a concentration-dependent LDL-CE-selective uptake when doubly labeled LDL particles were incubated with SR-BI-expressing COS-7 cells. In contrast to vector-transfected cells, SR-BI-expressing COS-7 cells showed marked increases in LDL cell association and CE uptake by the selective uptake pathway, but only a modest increase in CE uptake by the endocytic pathway. SR-BI-mediated LDL-CE-selective uptake exceeded LDL endocytic uptake by 50-100-fold. SR-BI-mediated LDL-CE-selective uptake was not inhibited by the proteoglycan synthesis inhibitor, p-nitrophenyl-beta-D-xylopyranoside or by the sulfation inhibitor sodium chlorate, indicating that SR-BI-mediated LDL-CE uptake occurs independently of LDL interaction with cell-surface proteoglycan. Analyses with subclones of Y1 adrenocortical cells showed that LDL-CE-selective uptake was proportional to the level of SR-BI expression. Furthermore, antibody directed to the extracellular domain of SR-BI blocked LDL-CE-selective uptake in adrenocortical cells. Thus, in cells that normally express SR-BI and in transfected COS-7 cells SR-BI mediates the efficient uptake of LDL-CE via the selective uptake mechanism. These results suggest that SR-BI may influence the metabolism of apoB-containing lipoproteins in vivo by mediating LDL-CE uptake into SR-BI-expressing cells.  相似文献   

6.
Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of circulating lipoprotein triglyceride molecules, is synthesized in myocytes and adipocytes but functions while bound to heparan sulfate proteoglycans (HSPGs) on the luminal surface of vascular endothelial cells. This requires transfer of LPL from the abluminal side to the luminal side of endothelial cells. Studies were performed to investigate the mechanisms of LPL transcytosis using cultured monolayers of bovine aortic endothelial cells. We tested whether HSPGs and members of the low density lipoprotein (LDL) receptor superfamily were involved in transfer of LPL from the basolateral to the apical side of cultured endothelial cells. Heparinase/heparinitase treatment of the basolateral cell surface or addition of heparin to the basolateral medium decreased the movement of LPL. This suggested a requirement for HSPGs. To assess the role of receptors, we used either receptor-associated protein, the 39-kDa inhibitor of ligand binding to the LDL receptor-related protein and the very low density lipoprotein (VLDL) receptor, or specific receptor antibodies. Receptor-associated protein reduced (125)I-LPL and LPL activity transfer across the monolayers. When the basolateral surface of the cells was treated with antibodies, only anti-VLDL receptor antibodies inhibited transcytosis. Moreover, overexpression of the VLDL receptor using adenoviral-mediated gene transfer increased LPL transcytosis. Thus, movement of active LPL across endothelial cells involves both HSPGs and VLDL receptor.  相似文献   

7.
Scavenger receptor, class B, type I (SR-BI) mediates selective uptake of high density lipoprotein (HDL) cholesteryl ester. SR-BI recognizes HDL, low density lipoprotein (LDL), exchangeable apolipoproteins, and protein-free lipid vesicles containing negatively charged phospholipids. Lipopolysaccharides (LPS) are highly glycosylated anionic phospholipids contributing to septic shock. Despite significant structural similarities between anionic phospholipids and LPS, the role of SR-BI in LPS uptake is unknown. Cla-1, the human SR-BI orthologue, was determined to be a LPS-binding protein and endocytic receptor mediating the binding and internalization of lipoprotein-free, monomerized LPS. LPS strongly competed with HDL, lipidfree apoA-I and apoA-II for HDL binding to the mouse RAW cells. Stably transfected HeLa cells expressing Cla-1-bound LPS with a Kd of about 16 microg/ml, and had a 3-4-fold increase in binding capacity and LPS uptake. Bodipy-labeled LPS uptake was found to initially accumulate in the plasma membrane and subsequently in a perinuclear region identified predominantly as the Golgi complex. Bodipy-LPS and Alexa-apoA-I had staining that colocalized on the cell surface and intracellularly indicating similar transport mechanisms. When associated with HDL, LPS uptake was increased in Cla-1 overexpressing HeLa cells by 5-10-fold. Cla-1-associated 3H-LPS uptake exceeded 125I-apolipoprotein uptake by 5-fold indicating a selective LPS uptake. Upon interacting with Cla-1 overexpressing HeLa cells, the complex (Bodipy-LPS/Alexa 488 apolipoprotein-labeled HDL) bound and was internalized as a holoparticle. Intracellularly, LPS and apolipoproteins were sorted to different intracellular compartments. With LPS-associated HDL, intracellular LPS co-localized predominantly with transferrin, indicating delivery to an endocytic recycling compartment. Our study reveals a close similarity between Cla-1-mediated selective LPS uptake and the recently described selective lipid sorting by rodent SR-BI. In summary, Cla-1 was found to bind and internalize monomerized and HDL-associated LPS, indicating that Cla-1 may play important role in septic shock by affecting LPS cellular uptake and clearance.  相似文献   

8.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. LPL promotes this selective lipid uptake independent of lipolysis. In this study, the role of SR-BI in the mechanism of this LPL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA, and significant SR-BI expression could be detected in immunoblots, whereas no SR-BI was visualized in control cells. Y1-BS1 murine adrenocortical cells were cultured without or with adrenocorticotropic hormone, and cells with no detectable or with SR-BI were obtained. These cells incubated without or with LPL in medium containing 125I/[3H]cholesteryl oleyl ether- labeled HDL3; tetrahydrolipstatin inhibited the catalytic activity of LPL. In BHK and in Y1-BS1 cells without or with SR-BI expression, apparent HDL3 selective CE uptake ([3H]CEt - 125I) was detectable. Cellular SR-BI expression promoted HDL3 selective CE uptake by approximately 250-1,900%. In BHK or Y1-BS1 cells, LPL mediated an increase in apparent selective CE uptake. Quantitatively, this stimulating LPL effect was very similar in control cells and in cells with SR-BI expression. The uptake of radiolabeled HDL3 was also investigated in human embryonal kidney 293 (HEK 293) cells that are an established SR-BI-deficient cell model. LPL stimulated [3H]cholesteryl oleyl ether uptake from labeled HDL3 by HEK 293 cells substantially, showing that LPL can induce selective CE uptake from HDL3 independent of SR-BI. To explore the role of cell surface proteoglycans on lipoprotein uptake, we induced proteoglycan deficiency by heparinase treatment. Proteoglycan deficiency decreased the LPL-mediated promotion of HDL3 selective CE uptake. In summary, evidence is presented that the stimulating effect of LPL on HDL3 selective CE uptake is independent of SR-BI and lipolysis. However, cell surface proteoglycans are required for the LPL action on selective CE uptake. It is suggested that pathways distinct from SR-BI mediate selective CE uptake from HDL.  相似文献   

9.
Cells acquire lipoprotein cholesterol by receptor-mediated endocytosis and selective uptake pathways. In the latter case, lipoprotein cholesteryl ester (CE) is transferred to the plasma membrane without endocytosis and degradation of the lipoprotein particle. Previous studies with Y1/E/tet/2/3 murine adrenocortical cells that were engineered to express apolipoprotein (apo) E demonstrated that apoE expression enhances low density lipoprotein (LDL) CE uptake by both selective and endocytic pathways. The present experiments test the hypothesis that apoE-dependent LDL CE selective uptake is mediated by scavenger receptor, class B, type I (SR-BI). Surprisingly, SR-BI expression was not detected in the Y1/E/tet/2/3 clone of Y1 adrenocortical cells, indicating the presence of a distinct apoE-dependent pathway for LDL CE selective uptake. ApoE-dependent LDL CE selective uptake in Y1/E/tet/2/3 cells was inhibited by receptor-associated protein and by activated alpha(2)-macroglobulin (alpha(2)M), suggesting the participation of the LDL receptor-related protein/alpha(2)M receptor. Reagents that inhibited proteoglycan synthesis or removed cell surface chondroitin sulfate proteoglycan completely blocked apoE-dependent LDL CE selective uptake. None of these reagents inhibited SR-BI-mediated LDL CE selective uptake in the Y1-BS1 clone of Y1 cells in which LDL CE selective uptake is mediated by SR-BI. We conclude that LDL CE selective uptake in adrenocortical cells occurs via SR-BI-independent and SR-BI-dependent pathways. The SR-BI-independent pathway is an apoE-dependent process that involves both chondroitin sulfate proteoglycans and an alpha(2)M receptor.  相似文献   

10.
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein (125I) and in the cholesteryl ester (CE) moiety ([3H]). The metabolism of 125I-/[3H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([3H]). In contrast, in LDLR−/− mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR−/− mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR−/− mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.  相似文献   

11.
Scavenger receptor BI (SR-BI) is a multi-ligand lipoprotein receptor that mediates selective lipid uptake from HDL, and plays a central role in hepatic HDL metabolism. In this report, we investigated the extent to which SR-BI selective lipid uptake contributes to LDL metabolism. As has been reported for human LDL, mouse SR-BI expressed in transfected cells mediated selective lipid uptake from mouse LDL. However, LDL-cholesteryl oleoyl ester (CE) transfer relative to LDL-CE bound to the cell surface (fractional transfer) was approximately 18-fold lower compared with HDL-CE. Adenoviral vector-mediated SR-BI overexpression in livers of human apoB transgenic mice ( approximately 10-fold increased expression) reduced plasma HDL-cholesterol (HDL-C) and apolipoprotein (apo)A-I concentrations to nearly undetectable levels 3 days after adenovirus infusion. Increased hepatic SR-BI expression resulted in only a modest depletion in LDL-C that was restricted to large LDL particles, and no change in steady-state concentrations of human apoB. Kinetic studies showed a 19% increase in the clearance rate of LDL-CE in mice with increased SR-BI expression, but no change in LDL apolipoprotein clearance. Quantification of hepatic uptake of LDL-CE and LDL-apolipoprotein showed selective uptake of LDL-CE in livers of human apo B transgenic mice. However, such uptake was not significantly increased in mice over-expressing SR-BI. We conclude that SR-BI-mediated selective uptake from LDL plays a minor role in LDL metabolism in vivo.  相似文献   

12.
Low density lipoproteins (LDL) contain apolipoprotein B-100 and are cholesteryl ester-rich, triglyceride-poor macromolecules, arising from the lipolysis of very low density lipoproteins. This review will describe the receptors responsible for uptake of whole LDL particles (holoparticle uptake), and the selective uptake of LDL cholesteryl ester. The LDL-receptor mediates the internalization of whole LDL through an endosomal-lysosomal pathway, leading to complete degradation of LDL. Increasing LDL-receptor expression by pharmacological intervention efficiently reduces blood LDL concentrations. The lipolysis stimulated receptor and LDL-receptor related protein may also lead to complete degradation of LDL in presence of free fatty acids and apolipoprotein E- or lipase-LDL complexes, respectively. Selective uptake of LDL cholesteryl ester has been demonstrated in the liver, especially in rodents and humans. This activity brings five times more LDL cholesteryl ester than the LDL-receptor to human hepatoma cells, suggesting that it is a physiologically significant pathway. The lipoprotein binding site of HepG2 cells mediates this process and recognizes all lipoprotein classes. Scavenger receptor class B type I and CD36, which mediate the selective uptake of high density lipoprotein cholesteryl ester, are potentially involved in LDL cholesteryl ester selective uptake, since they both bind LDL with high affinity. It is not known whether they are identical to the uncloned lipoprotein binding site and if the selective uptake of LDL cholesteryl ester produces a less atherogenic particle. If this is verified, pharmacological up-regulation of LDL cholesteryl ester selective uptake may become another therapeutic approach for reducing blood LDL-cholesterol levels and the risk of atherosclerosis.  相似文献   

13.
14.
Two lines of transgenic mice, hAIItg-delta and hAIItg-lambda, expressing human apolipoprotein (apo)A-II at 2 and 4 times the normal concentration, respectively, displayed on standard chow postprandial chylomicronemia, large quantities of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) but greatly reduced high density lipoprotein (HDL). Hypertriglyceridemia may result from increased VLDL production, decreased VLDL catabolism, or both. Post-Triton VLDL production was comparable in transgenic and control mice. Postheparin lipoprotein lipase (LPL) and hepatic lipase activities decreased at most by 30% in transgenic mice, whereas adipose tissue and muscle LPL activities were unaffected, indicating normal LPL synthesis. However, VLDL-triglyceride hydrolysis by exogenous LPL was considerably slower in transgenic compared with control mice, with the apparent Vmax of the reaction decreasing proportionately to human apoA-II expression. Human apoA-II was present in appreciable amounts in the VLDL of transgenic mice, which also carried apoC-II. The addition of purified apoA-II in postheparin plasma from control mice induced a dose-dependent decrease in LPL and hepatic lipase activities. In conclusion, overexpression of human apoA-II in transgenic mice induced the proatherogenic lipoprotein profile of low plasma HDL and postprandial hypertriglyceridemia because of decreased VLDL catabolism by LPL.  相似文献   

15.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. We compared binding and degradation of normal and apoE-depleted human VLDL and apoE knockout mouse VLDL in human foreskin fibroblasts. Surface binding at 37 degrees C of apoE knockout VLDL was greater than that of normal VLDL by 3- and 40-fold, respectively, in the presence of LPL and HTGL. In spite of the greater stimulation of surface binding, lipase-stimulated degradation of apoE knockout mouse VLDL was significantly lower than that of normal VLDL (30, 30, and 80%, respectively, for control, LPL, and HTGL treatments). In the presence of LPL and HTGL, surface binding of apoE-depleted human VLDL was, respectively, 40 and 200% of normal VLDL whereas degradation was, respectively, 25 and 50% of normal VLDL. LPL and HTGL stimulated degradation of normal VLDL in a dose-dependent manner and by a LDL receptor-mediated pathway. Maximum stimulation (4-fold) was seen in the presence LPL (1 microgram/ml) or HTGL (3 microgram/ml) in lovastatin-treated cells. On the other hand, degradation of apoE-depleted VLDL was not significantly increased by the presence of lipases even in lovastatin-treated cells. Surface binding of apoE-depleted VLDL to metabolically inactive cells at 4 degrees C was higher in control and HTGL-treated cells, but unchanged in the presence of LPL. Degradation of prebound apoE-depleted VLDL was only 35% as efficient as that of normal VLDL. Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation.Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.  相似文献   

16.
Apolipoprotein E (apoE) plays a major role in lipoprotein metabolism by mediating the binding of apoE-containing lipoproteins to receptors. The role of hepatic apoE in the catabolism of apoE-free lipoproteins such as low density lipoprotein (LDL) and high density lipoprotein-3 (HDL(3)) is however, unclear. We analyzed the importance of hepatic apoE by comparing human LDL and HDL(3) metabolism in primary cultures of hepatic cells from control C57BL/6J and apoE knockout (KO) mice. Binding analysis showed that the maximal binding capacity (Bmax) of LDL, but not of HDL(3), is increased by twofold in the absence of apoE synthesis/secretion. Compared to control hepatic cells, LDL and HDL(3) holoparticle uptake by apoE KO hepatic cells, as monitored by protein degradation, is reduced by 54 and 77%, respectively. Cleavage of heparan sulfate proteoglycans (HSPG) by treatment with heparinase I reduces LDL association by 21% in control hepatic cells. Thus, HSPG alone or a hepatic apoE-HSPG complex is partially involved in LDL association with mouse hepatic cells. In apoE KO, but not in normal hepatic cells, the same treatment increases LDL uptake/degradation by 2.4-fold suggesting that in normal hepatic cells, hepatic apoE increases LDL degradation by masking apoB-100 binding sites on proteoglycans. Cholesteryl ester (CE) association and CE selective uptake (CE/protein association ratio) from LDL and HDL(3) by mouse hepatic cells were not affected by the absence of apoE expression. We also show that 69 and 72% of LDL-CE hydrolysis in control and apoE KO hepatic cells, respectively, is sensitive to chloroquine revealing the importance of a pathway linked to lysosomes. In contrast, HDL(3)-CE hydrolysis is only mediated by a nonlysosomal pathway in both control and apoE KO hepatic cells. Overall, our results indicate that hepatic apoE increases the holoparticle uptake pathway of LDL and HDL(3) by mouse hepatic cells, that HSPG devoid of apoE favors LDL binding/association but impairs LDL uptake/degradation and that apoE plays no significant role in CE selective uptake from either human LDL or HDL(3) lipoproteins.  相似文献   

17.
We have previously shown that transgenic expression of catalytically inactive lipoprotein lipase (LPL) in muscle (Mck-N-LPL) enhances triglyceride hydrolysis as well as whole particle lipoprotein and selective cholesterol ester uptake. In the current study, we have examined whether these functions can be performed by inactive LPL alone or require the presence of active LPL expressed in the same tissue. To study inactive LPL in the presence of active LPL in the same tissue, the Mck-N-LPL transgene was bred onto the heterozygous LPL-deficient (LPL1) background. At 18 h of age, Mck-N-LPL reduced triglycerides by 35% and markedly increased muscle lipid droplets. In adult mice, it reduced triglycerides by 40% and increased lipoprotein particle uptake into muscle by 60% and cholesterol ester uptake by 110%. To study inactive LPL alone, the Mck-N-LPL transgene was bred onto the LPL-deficient (LPL0) background. These mice die at approximately 24 h of age. At 18 h of age, in the absence of active LPL, inactive LPL expression did not diminish triglycerides nor did it result in the accumulation of muscle lipid droplets. To study inactive LPL in the absence of active LPL in the same tissue in adult animals, the Mck-N-LPL transgene was bred onto mice that only expressed active LPL in the heart (LPL0/He-LPL). In this case, Mck-N-LPL did not reduce triglycerides or increase the uptake of lipoprotein particles but did increase muscle uptake of chylomicron and very low density lipoprotein cholesterol ester by 40%. Thus, in the presence of active LPL in the same tissue, inactive LPL augments triglyceride hydrolysis and increases whole particle triglyceride-rich lipoprotein and selective cholesterol ester uptake. In the absence of active LPL in the same tissue, inactive LPL only mediates selective cholesterol ester uptake.  相似文献   

18.
Macrophages are intimately involved in the pathogenesis of atherosclerotic diseases. A key feature of this process is their uptake of various lipoproteins and subsequent transformation to foam cells. Since lipoprotein lipase (LPL) is believed to play a role in foam cell formation, we investigated if endogenously produced proteoglycans (PGs) affect the release of this enzyme from macrophages. The human leukaemic cell line THP-1 which differentiates into macrophages by treatment with phorbol ester (phorbol 12-myristate 13-acetate) served as a model. The differentiation of THP-1 macrophages promoted the release of PGs into the cell medium which caused the detachment of LPL activity from the cell surface, and prevented LPL re-uptake and inactivation. These PGs were mainly composed of chondroitin sulfate type and exerted a heparin-like effect on LPL release. LPL is known to increase the cell association of lipoproteins by the well known bridging function. Exogenous bovine LPL at a concentration of 1 microg/ml enhanced low density lipoprotein (LDL)-binding 10-fold. Endogenously produced PGs reduced LPL-mediated binding of LDL. It is proposed that the differentiation-dependent increase in the release of PGs interferes with binding of LPL and reduces lipoprotein-binding to macrophages.  相似文献   

19.
High density lipoprotein (HDL) can protect low density lipoprotein (LDL) against oxidation. Oxidized cholesterol esters from LDL can be transferred to HDL and efficiently and selectively removed from the blood circulation by the liver and adrenal in vivo. In the present study, we investigated whether scavenger receptor BI (SR-BI) is responsible for this process. At 30 min after injection, the selective uptake of oxidized cholesterol esters from HDL for liver and adrenal was 2.3- and 2.6-fold higher, respectively, than for native cholesterol esters, whereas other tissues showed no significant difference. The selective uptake of oxidized cholesterol esters from HDL by isolated liver parenchymal cells could be blocked for 75% by oxidized LDL and for 50% by phosphatidylserine liposomes, both of which are known substrates of SR-BI. In vivo uptake of oxidized cholesterol esters from HDL by parenchymal cells decreased by 64 and 81% when rats were treated with estradiol and a high cholesterol diet, respectively, whereas Kupffer cells showed 660 and 475% increases, respectively. These contrasting changes in oxidized cholesterol ester uptake were accompanied by similar contrasting changes in SR-BI expression of parenchymal and Kupffer cells. The rates of SR-BI-mediated selective uptake of oxidized and native cholesterol esters were analyzed in SR-BI-transfected Chinese hamster ovary cells. SR-BI-mediated selective uptake was 3.4-fold higher for oxidized than for native cholesterol esters (30 min of incubation). It is concluded that in addition to the selective uptake of native cholesterol esters, SR-BI is responsible for the highly efficient selective uptake of oxidized cholesterol esters from HDL and thus forms an essential mediator in the HDL-associated protection system for atherogenic oxidized cholesterol esters.  相似文献   

20.
The contribution of triacylglycerol to energy provision in the hypertrophied heart, mediated through lipoprotein lipase (LPL) is largely unknown and the contribution of very-low-density lipoprotein (VLDL) receptor to control of LPL presentation at the endothelium is unclear. For isolated perfused rat hearts, cold acclimation (CA) induced volume-overload hypertrophy, with decreased developed pressure (P<0.01), increased end-diastolic volume of the left ventricle (P<0.001) and a loss of contractile reserve in response to dobutamine challenge (P<0.01). Oleate utilisation by perfused hearts was unchanged by CA, however uptake of intralipid emulsion increased 3-fold (P<0.01). CA increased the proportion of lipid deposited in tissue lipids from 10% in euthermic controls to 40% (P<0.01) although the overall contribution of individual lipid classes was unaffected. Cold acclimation significantly increased heparin-releasable LPL (P<0.05) and tissue residual LPL (P<0.01). Western blot analysis indicated preserved expression of proteins coding for SERCA2, muscle-CPT1 and VLDL-receptor following CA, while AMPKalpha2 and phospho-AMPKalpha2 were unaffected. These observations indicate that for physiological hypertrophy AMPK phosphorylation does not mediate the enhanced translocation of LPL to cardiac endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号