首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence labeling of the target molecules using a small molecule-based probe is superior than a method using genetically expressed green fluorescence protein (GFP) in terms of convenience in its preparation and functionalization. Fluorophore-nitrilotriacetic acid (NTA) conjugates with several ester protecting groups were synthesized and evaluated for their cell membrane permeability by fluorescence microscopy analysis. One of the derivatives, acetoxymethyl (AM)-protected NTA conjugate is hydrolyzed, resulting in intracellular accumulation, thus providing localized fluorescence intensity in cells. This modification is expected as an effective method for converting a non-cell membrane permeable NTA-BODIPY conjugates to a cell membrane permeable derivatives.  相似文献   

2.
This protocol outlines the carboxyfluorescein diacetate succinimidyl ester (CFSE) method for following the proliferation of human lymphocytes in vitro and mouse lymphocytes both in vitro and in vivo. The method relies on the ability of CFSE to covalently label long-lived intracellular molecules with the highly fluorescent dye, carboxyfluorescein. Following each cell division, the equal distribution of these fluorescent molecules to progeny cells results in a halving of the fluorescence of daughter cells. The CFSE labeling protocol described, which typically takes <1 h to perform, allows the detection of up to eight cell divisions before CFSE fluorescence is decreased to the background fluorescence of unlabeled cells. Protocols are outlined for labeling large and small numbers of human and mouse lymphocytes, labeling conditions being identified that minimize CFSE toxicity but maximize the number of cell divisions detected. An important feature of the technique is that division-dependent changes in the expression of cell-surface markers and intracellular proteins are easily quantified by flow cytometry.  相似文献   

3.
We have previously established a method of detecting intracellular chelatable iron in viable cells based on digital fluorescence microscopy. To quantify cellular chelatable iron, it was crucial to determine the intracellular indicator concentration. In the present study, we therefore adapted the method to confocal laser scanning microscopy, which should allow the determination of the indicator concentration on the single-cell level. The fluorescent heavy-metal indicator phen green SK (PG SK), the fluorescence of which is quenched by iron, was loaded into cultured rat hepatocytes. The hepatocellular fluorescence increased when cellular chelatable iron available to PG SK was removed from the probe by an excess of the membrane-permeable transition metal chelator 2,2'-dipyridyl (2, 2'-DPD, 5 mM). We optimized the scanning parameters for quantitatively recording changes in fluorescence and determined individual intracellular PG SK concentrations from the unquenched cellular fluorescence (after 2,2'-DPD) compared with PG SK standards in a "cytosolic" medium. An ex situ calibration method based on laser scanning microscopy was set up to determine the concentration of cellular chelatable iron from the increase of PG SK fluorescence after addition of 2,2'-DPD (5 mM). As the stoichiometry of the PG SK:Fe(2+) complex was 3:1 as long as PG SK was not limiting, cellular chelatable iron was calculated directly from absolute changes in cellular fluorescence. Using this method, we found 2.5 +/- 2.2 microM chelatable iron in hepatocytes. This method makes it possible to determine the pool of chelatable iron in single vital cells independently of cellular differences (e.g., dye loading, cell volume) in heterogeneous cell populations.  相似文献   

4.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

5.
Microspectrofluorometry allows to obtain the fluorescence spectrum of an isolated living cell. When cells are preincubated with 1,4 diacetoxy-2,3 dicyanobenzol the cellular fluorescence spectrum can be resolved in its components i.e. the characteristic fluorescence spectrum of each ionized forms of the probe and the intrinsic cell fluorescence spectrum due to NAD(P)H. This allows the determination of the intracellular pH with good accuracy. Furthermore, comparison between the intensity of the intrinsic cell fluorescence and the probe fluorescence intensity offers us an opportunity to monitor the intracellular amount of the drug.  相似文献   

6.
We describe here an efficient method for identifying intracellular localization signals in proteins with stereospecific intracellular localizations in culture cells. The method involves rapid fluorescence screening of cells transfected with a cDNA library in which cDNAs are fused to the gene encoding the Aequorea victoria green fluorescent protein (GFP). We analyzed nuclear localization and nuclear localization signals (NLSs) in a model application of this method. As a result, we identified classical NLSs in 75% of nuclear localized proteins. We identified some novel NLS candidates among the classical NLS-negative sequences whose nuclear localization was also identified in another cell line and with other molecular tag sequences. This method will be useful for identifying intracellular localization signals and for more detailed analysis of intracellular architecture.  相似文献   

7.
Fluorescent Ca2+ indicator dyes can be introduced into cells through the same microelectrode used for intracellular voltage recording. Simultaneous measurement of cell membrane potential and intracellular Ca2+ concentration can be very helpful in interpreting the mechanisms of Ca2+ increases. This chapter describes fluorescence image acquisition using a CCD camera and a computer program that also records a synchronized membrane potential trace. The same program allows for preliminary data analysis. More elaborate analyses can be accomplished with commercial programs. We also describe quantitative evaluations of sources of error in the use of the statistic deltaF/F as an indicator of Ca2+ concentration. Especially important errors to minimize are changes in background fluorescence and inappropriate autofluorescence corrections. Some improvement of fluorescence images of cells deep within slices may be accomplished by masking. One method is described for making a mask based on the raw fluorescence image. With another method, highly detailed cell morphologies may be conveyed by using masks based on neurobiotin injections and camera lucida drawings.  相似文献   

8.
A novel on-line fluorescence monitoring system for marine cyanobacterial cultivation was developed. This method is based on the measurement of intracellular phycocyanin content, which is the major light harvesting protein. A fluorescence spectrophotometer, equipped with a flow cell connected with a culture liquid recycling tube was used. Experiments were carried out using a marine unicellular cyanobacteria Synechococcus sp. NKBG 042902 isolated from Japanese coastal sea water. We have optimized excitation wavelength to avoid the light scattering, using non-pigmented old cells which no longer contained phycocyanin. At an excitation wavelength of 590 nm, light scattering was minimized. Viable cell concentration could be measured in the range of 2 x 10(6) to 2 x 10(8) cells per ml, without pronounced light scattering. Continuous monitoring of marine cyanobacteria cultivation was performed. Cell concentrations were determined by both culture fluorescence and by using a hemacytometer. A good linear correlation was obtained. We conclude that on-line monitoring of cyanobacterial culture fluorescence based on phycocyanin is a rapid, efficient and also versatile method for determining viable cell concentration.  相似文献   

9.
The study of the physicochemical properties of Mag-indo-1, a fluorescent probe used for intracellular magnesium measurements, has shown that in a biological environment the deprotonated form of this probe is in simultaneous equilibrium with a protonated form, a protein and a magnesium-bound form. The complex emission fluorescence spectrum emitted by a single living cell was analyzed using a computerized method, allowing the evaluation of the Mag-indo-1 to the cellular fluorescence. This approach used to evaluate intracellular Mg2+ concentration has also shown the variability of the important participation of protein-bound Mag-indo-1 to the cellular fluorescence. Thus the widely used ratioing method, unable to take into account this variability, cannot afford a reliable evaluation of [Mg2+]. Whatever the technique used for investigation (microfluorimetry, flow cytometry, etc.) the evaluation of [Mg2+]i using the fluorescent probe Mag-indo-1 requires a method able to quantify, in complex fluorescence, the fluorescence intensity of the forms involved in the equilibrium with Mg2+.Abbreviations [Ca2+]1 intracellular calcium concentration - [Mg2+]i intracellular magnesium concentration  相似文献   

10.
It was found that intracellular glycogen is stabilized against acid treatment when it is stored under dry conditions for three months after methanol fixation. This stabilization allowed quantitative double fluorescence staining for nuclear DNA and intracellular glycogen, in a single cell. A Feulgen nucleal reaction, with acriflavine-Schiff's reagent following 5 N HCl hydrolysis at 25 degrees C for 4 min, was followed by a pararosanilin-Schiff PAS reaction for glycogen. This short term hydrolysis was found to be sufficient for the performance of a acriflavine-Schiff's Feulgen nucleal reaction and to provide good preservation of intracellular glycogen. Quantification of nuclear DNA and intracellular glycogen were consecutively carried out with a digital microfluorometer on a single ascites cancer cell of the AH-13 line stained by this method. It was found that there is a positive linear correlation between the amount of DNA and glycogen in this cell line.  相似文献   

11.
Changes in the free zinc(II) concentration are closely related to cell proliferation and apoptosis, especially during the early apoptotic process. In the present paper, we demonstrated that zinc(II) probe FluoZin‐3AM owns sensitive properties to distinguish different stages of apoptotic cell (induced by an anticancer agent, etoposide) according to trace intracellular zinc(II) fluorescence flux. When apoptosis in HeLa or K562 cells was artificially induced, FluoZin‐3AM selectively and strongly stained apoptotic cells only at early and middle stages, which was attributed to significantly increased free zinc(II) flux during these stages. This conclusion was further verified by comparing it with the conventional apoptosis detector probe Annexin‐V‐FITC and PI. Furthermore, FluoZin‐3AM was found cell permeable to detect the intracellular zinc(II) fluorescence enhancement to threefolds within 120 s with low cytotoxicity when zinc(II) was incorporated into the cell by zinc(II) ionophore pyrithione. All the above implied that monitoring intracellular zinc fluorescence flux was an effective method to distinguish cell apoptosis from necrosis, and FluoZin‐3AM was found to be a suitable probe acting alone to fulfill the work. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Summary It was found that intracellular glycogen is stabilized against acid treatment when it is stored under dry conditions for three months after methanol fixation. This stabilization allowed quantitative double fluorescence staining, for nuclear DNA and intracellular glycogen, in a single cell. A Feulgen nucleal reaction with acriflavine-Schiff's reagent following 5 N HCl hydrolysis at 25°C for 4 min, was followed by a pararosanilin-Schiff PAS reaction for glycogen. This short term hydrolysis was found to be sufficient for the performance of a acriflavine-Schiff's Feulgen nucleal reaction and to provide good preservation of intracellular glycogen. Quantification of nuclear DNA and intracellular glycogen was consecutively carried out with a digital microfluorometer on a single ascites cancer cell of the AH-13 line stained by this method. It was found that there is a positive linear correlation between the amount of DNA and glycogen in this cell line.This work was partly supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan  相似文献   

13.
A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV) excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack.  相似文献   

14.
A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.  相似文献   

15.
Berkels R  Dachs C  Roesen R  Klaus W 《Cell calcium》2000,27(5):281-286
Different methods to measure the unstable radical nitric oxide (NO) have been established. We are going to present a new method to measure intracellular calcium and NO simultaneously in endothelial cells. A new fluorescent dye (DAF-2) has been developed recently which binds NO resulting in an enhanced fluorescence. We loaded porcine aortic endothelial cells with Fura-2, a fluorescent dye commonly used to measure intracellular calcium, and DAF-2 simultaneously (cell permeable dyes). Using excitation wavelengths of lambda 340 nm (Fura-2) and lambda 485 nm (DAF-2) we could show that thrombin induces an intracellular calcium increase and simultaneously a NO formation in endothelial cells which could be blocked by a NO synthase inhibitor. This new method of a simultaneous measurement of intracellular calcium and NO provides the possibility to follow intracellular calcium and NO distributions online, and is sensitive enough to monitor changes of NO formed by the constitutive endothelial NO-synthase.  相似文献   

16.
The invasion and replication of Toxoplasma gondii are usually analyzed through either optical microscopy or incorporation of tritiated uracil. A new method has been developed using flow cytometric analysis to examine the entry and replication of T. gondii RH strain in Saimiri brain endothelial cells. After cell fixation and permeabilization using saponin, intracellular T. gondii were labeled with a monoclonal antibody against T. gondii SAG-1 (P30; the major cell-surface antigen) followed by fluorescein-conjugated rabbit anti-mouse IgG. The percentage of infected cells obtained using flow cytometry correlated directly with that obtained by UV light microscopy (r = 0.97). The mean fluorescence intensity of infected cells reflects intracellular P30 and assesses intracellular replication. The distribution of fluorescence per infected cell, considered with the percentage of infected cells, also allows a qualitative analysis of replication. Such a method is rapid, easy, and does not require specialized equipment for radioactive labeling.  相似文献   

17.
A novel fluorescence microscope/laser optical system was developed to measure fast transients of membrane-proximal versus bulk cytoplasmic intracellular calcium levels in cells labeled with a fluorescent calcium indicator. The method is based on the rapid chopping of illumination of the cells between optical configurations for epifluorescence, which excites predominantly the bulk intracellular region, and total internal reflection fluorescence, which excites only the region within approximately 100 nm of the cell-substrate contact. This method was applied to Fluo-3-loaded neutrophils that were activated by the chemoattractant N-formyl-met-leu-phe. Chemoattractant-activated cells showed 1) transient increases in both membrane-proximal and bulk cytosolic Ca2+ that peaked simultaneously; 2) a larger fractional change (20-60%) in membrane-proximal Ca2+ relative to bulk cytosolic Ca2+ that peaked at a time when the main Ca2+ transient was decreasing in both regions and that persisted well after the main transient was over. This method should be applicable to a wide variety of cell types and fluorescent ion indicators in which membrane-proximal ionic transients may be different from those deeper within the cytosol.  相似文献   

18.
C Dive  J V Watson  P Workman 《Cytometry》1990,11(2):244-252
We describe an improved twin-probe multiparameter flow cytometric technique to examine cell membrane permeability. Ability to retain preloaded intracellular bis-carboxyethyl carboxy fluorescein (BCECF, green fluorescence) and to exclude extracellular propidium (red fluorescence) is measured, simultaneously with forward and right-angle scatter. This has significant advantages over an earlier method using fluorescein together with ethidium. In addition to the two expected cell populations which were stained green positive, red negative (by convention membrane "intact" and "viable," Region 1) and green negative, red positive ("membrane-damaged" and "non-viable," Region 3), a third population was seen which fluoresced neither green nor red and displayed intermediate light scatter characteristics (Region 2). This was true for each of 9 cell types in vitro. For EMT6 mouse mammary tumour cells held under sub-optimal conditions or treated with membrane-active drugs, progression from Region 1 to Region 2 was observed, followed by further progression from Region 2 to Region 3. Cells eventually accumulated in Region 3. These results suggest that sequential changes in membrane structure lead to increased permeability, first with respect to intracellular BCECF and in turn to extracellular propidium.  相似文献   

19.
Lateral diffusion measurements on cell membrane molecules, most commonly accomplished through fluorescence photobleaching recovery (FPR or FRAP), provide information on such molecules' size, environment, and participation in intermolecular interactions. However, difficulties arise in FPR measurements of lateral dynamics of materials, such as visible fluorescent protein (VFP) fusion proteins, where fluorescent intracellular species contribute to the fluorescence recovery signal and thus distort measurements intended to reflect surface molecules only. A new method helps eliminate these difficulties. In total internal reflection interference fringe FPR, interfering laser beams enter a 1.65-numercial aperture (NA) Olympus objective at the periphery of the back focal plane where the NA exceeds 1.38. This creates an extended interference pattern totally internally reflected at the coverslip-medium interface which excites fluorescence only from fluorescent molecules located where the cell contacts the coverslip. The large illuminated area interrogates many more membrane receptors than spot methods and hence obtains more diffusion information per measurement while rejecting virtually all interfering intracellular fluorescence. We report successful measurements of membrane dynamics of both VFP-containing and conventionally labeled molecules by this technique and compare them with results of other FPR methods.  相似文献   

20.
The microspectrofluorometric approach has been used to investigate in single living cells in culture fundamental questions raised by the use of anthralin, a potent antipsoriatic drug. This method allows fluorescence determinations on the intracellular fate of the drug as well as the recognition of structural and metabolic alterations induced by the drug. In the absence of demonstrable adduct formation with DNA, the antipsoriatic, i.e. antiproliferative effect of anthralin, has been attributed to its action at the level of mitochondria or at the level of glucose-6-phosphate dehydrogenase which initiates the pentose phosphate shunt (cf. its prominent role in nucleic acid synthesis). Upon addition of 2.3 to 23 microM anthralin to the L cell culture, the characteristic structure of the anthralin anion fluorescence spectrum is recognized almost immediately in the cytoplasm (much weaker in the nucleus) but disappears within minutes. The vital mitochondrial fluorescence probe dimethylaminostyryl-pyridinium-methyl-iodine reveals striking structural alterations of the mitochondria within 15 min after addition of the drug. At the same time, there is a stimulation of the transient NAD(P)+ reduction observed upon microinjection into the L cell of the Krebs' cycle substrate malate, or the pentose cycle substrate 6-phosphogluconate. Specially, the injection of the latter to anthralin-treated cells suggests that upon release of the mitochondrial control, there is a tremendous disruption of metabolic activity which could have profound consequences on the proliferative activity of the cell. These findings, while they open new possibilities for the intracellular evaluation of therapeutic agents, create also a challenge in understanding the complex and dynamic interrelationships between intracellular organelles and bioenergetic or biosynthetic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号