首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular basis for trypanosome antigenic variation   总被引:36,自引:0,他引:36  
P Borst  G A Cross 《Cell》1982,29(2):291-303
  相似文献   

2.
M Roivainen  T Hovi 《Journal of virology》1987,61(12):3749-3753
It was recently reported that the intestinal protease trypsin cleaves in vitro the VP1 protein of type 3 poliovirus at antigenic site 1 (J. P. Icenogle, P. D. Minor, M. Ferguson, and J. M. Hogle, J. Virol. 60:297-301, 1986). We found that incubation of purified or crude type 3 poliovirus preparations with specimens of human intestinal fluid brings about a similar change in the virion structure. Sera from children immunized solely with the regular inactivated poliovirus vaccine (IPV) neutralized trypsin-cleaved Sabin 3 virus poorly, if at all, despite moderate levels of antibodies to the corresponding intact virus. Sera containing very high titers of the intact virus also neutralized the trypsin-cleaved virus but at a relatively weaker capacity. Most sera from older persons who may have been exposed to a natural poliovirus infection before the introduction of the poliovirus vaccines as well as sera from children infected with type 3 poliovirus during the recent outbreak in Finland were able to neutralize the trypsin-cleaved type 3 polioviruses. Serum specimens collected 1 month after a single dose of live poliovirus vaccine from children previously immunized with IPV were able to neutralize the trypsin-cleaved virus as well. During natural infection and after live poliovirus vaccine administration polioviruses are exposed to proteolytic enzymes in the gut. Our results may offer an alternative explanation for the relatively weak mucosal immunity obtained with IPV. Improvement of IPV preparations by incorporation of trypsin-treated type 3 polioviruses in the vaccine should be studied.  相似文献   

3.
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle.  相似文献   

4.
African trypanosomes, which cause sleeping sickness in man and other mammals, are able to evade immune destruction in their hosts by altering the expression of a major cell surface molecule, the variant surface glycoprotein (VSG). The VSGs are encoded by a multigene family, and antigenic variation occurs when the trypanosome switches from expression of one VSG gene to another. This switching process involves changes in the arrangement of the trypanosome genomic DNA.  相似文献   

5.
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location analogous to the binding site of the guanine nucleotide dissociation stimulator (GDS) for E. coli EF-Tu. The conservation of this sequence, in combination with the results of earlier genetic and biochemical studies of the SRP cycle, leads us to hypothesize that a component of the Srp68/72p heterodimer serves as the GDS for both Srp54p and SR alpha. Using an iterative alignment procedure, we demonstrate similarity between Srp68p and sequence motifs conserved among GDS proteins for small Ras-related GTPases. The conservation of SRP cycle components in organisms from all three major branches of the phylogenetic tree suggests that this pathway for protein export is of ancient evolutionary origin.  相似文献   

6.
Morphological evolution is usually considered to occur by the selection of small heritable variations in the expression of anatomical traits, on the basis of improved adaptation to new environmental conditions. An alternative mode of morphological evolution is proposed here: the production of a spectrum of forms by the action of intrinsic physical properties of cell aggregates, followed by intense selection for biochemical mechanisms that make the generation of a subset of viable morphologies, and pathways of transition between morphologies, more reliable. This view provides an account of the origins of important features of metazoan body plans and organ forms, including gastrulation and other types of tissue multilayering, lumen formation, and segmentation. It also implies that most major morphological innovations would occur early in phylogeny, often more than once, with much subsequent genetic selection being of a stabilizing or canalizing variety. Consistent with recent findings, this view predicts that functional redundancy among developmentally important genes and genetic circuits should be prevalent.  相似文献   

7.
Type 1 wild-vaccine recombinant polioviruses were isolated from poliomyelitis patients in China from 1991 to 1993. We compared the sequences of 34 recombinant isolates over the 1,353-nucleotide (nt) genomic interval (nt 2480 to 3832) encoding the major capsid protein, VP1, and the protease, 2A. All recombinants had a 367-nt block of sequence (nt 3271 to 3637) derived from the Sabin 1 oral poliovirus vaccine strain spanning the 3'-terminal sequences of VP1 (115 nt) and the 5' half of 2A (252 nt). The remaining VP1 sequences were closely (up to 99.5%) related to those of a major genotype of wild type 1 poliovirus endemic to China up to 1994. In contrast, the non-vaccine-derived sequences at the 3' half of 2A were more distantly related (<90% nucleotide sequence match) to those of other contemporary wild polioviruses from China. The vaccine-derived sequences of the earliest (April 1991) isolates completely matched those of Sabin 1. Later isolates diverged from the early isolates primarily by accumulation of synonymous base substitutions (at a rate of approximately 3.7 x 10(-2) substitutions per synonymous site per year) over the entire VP1-2A interval. Distinct evolutionary lineages were found in different Chinese provinces. From the combined epidemiologic and evolutionary analyses, we propose that the recombinant virus arose during mixed infection of a single individual in northern China in early 1991 and that its progeny spread by multiple independent chains of transmission into some of the most populous areas of China within a year of the initiating infection.  相似文献   

8.
9.
Craniofacial development provides a number of opportunities to investigate the cellular and molecular biology of morphogenesis, cytodifferentiation, tissue-specific extracellular matrix (ECM) formations, and biomineralization. Regulatory processes associated with mandibular morphogenesis and specifically tooth formation are being investigated by the identification of when and where molecular determinants such as cell adhesion molecules (CAMs), substrate adhesion molecules (SAMs), and tissue-specific structural gene products are expressed during sequential developmental stages. Based upon in vitro organotypic culture studies in serumless, chemically defined medium, instructive and permissive signaling has been found to be required for both mandibular and dental morphogenesis and cytodifferentiation. For example, intrinsic developmental instructions (autocrine and paracrine factors), independent of long-range hormonal or exogenous growth factors, mediate morphogenesis from the initiation of the dental lamina through crown and initial root stages of tooth development. This review summarizes recent results using experimental embryology, organ culture, recombinant DNA technology, and immunocytology to elucidate mechanisms responsive to instructive epithelial-mesenchymal interactions associated with mandibular morphogenesis, tooth positional information, and subsequent tooth crown and initial root development.  相似文献   

10.
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be “conserved,” i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.  相似文献   

11.
One of the most challenging problems in biology resides in unraveling the molecular mechanisms, hardwired in the genome, that define and regulate the multiscale tridimensional organization of organs, tissues and individual cells. While works in cultured cells have revealed the importance of cytoskeletal networks for cell architecture, in vivo models are now required to explore how such a variety in cell shape is produced during development, in interaction with neighboring cells and tissues. The genetic analysis of epidermis development in Drosophila has provided an unbiased way to identify mechanisms remodeling the shape of epidermal cells, to form apical trichomes during terminal differentiation. Since hearing in vertebrates relies on apical cell extensions in sensory cells of the cochlea, called stereocilia, the mapping of human genes causing hereditary deafness has independently identified several factors required for this peculiar tridimensional organization. In this review, we summarized recent results obtained toward the identification of genes involved in these localized changes in cell shape and discuss their evolution throughout developmental processes and species.  相似文献   

12.
Once antigen is opsonised by IgG it is removed from the circulation by Fcgamma-receptor expressing cells. Fcgamma-receptors are type I transmembrane molecules that carry extracellular parts consisting of two or three immunoglobulin domains. Previously solved structures of Fc-receptors reveal that the N-terminal two Ig-like domains are arranged in a steep angle forming a heart-shaped structure. The crystal structure of the FcgammaRIII/hIgG1-Fc-fragment demonstrated that the Fc-fragment is recognised through loops of the C-terminal receptor domain of the FcgammaRIII. As the overall structure of the FcRs and their Ig ligands are very similar we modelled the Ig complexes with FcgammaRI, FcgammaRII and FcepsilonRIalpha based on the FcgammaRIII/hIgG1-Fc-fragment structure. The obtained models are consistent with the observed biochemical data and may explain the observed specificity and affinities.  相似文献   

13.
Melastomataceae are among the most abundant and diversified groups of plants throughout the tropics, but their intrafamily relationships and morphological evolution are poorly understood. Here we report the results of parsimony and maximum likelihood (ML) analyses of cpDNA sequences from the rbcL and ndhF genes and the rpl16 intron, generated for eight outgroups (Crypteroniaceae, Alzateaceae, Rhynchocalycaceae, Oliniaceae, Penaeaceae, Myrtaceae, and Onagraceae) and 54 species of melastomes. The sample represents 42 of the family's currently recognized ~150 genera, the 13 traditional tribes, and the three subfamilies, Astronioideae, Melastomatoideae, and Memecyloideae (= Memecylaceae DC.). Parsimony and ML yield congruent topologies that place Memecylaceae as sister to Melastomataceae. Pternandra, a Southeast Asian genus of 15 species of which five were sampled, is the first- branching Melastomataceae. This placement has low bootstrap support (72%), but agrees with morphological treatments that placed Pternandra in Melastomatacaeae because of its acrodromal leaf venation, usually ranked as a tribe or subfamily. The interxylary phloem islands found in Memecylaceae and Pternandra, but not most other Melastomataceae, likely evolved in parallel because Pternandra resembles Melastomataceae in its other wood characters. A newly discovered plesiomorphic character in Pternandra, also present in Memecylaceae, is a fibrous anther endothecium. Higher Melastomataceae lack an endothecium as do the closest relatives of Melastomataceae and Memecylaceae. The next deepest split is between Astronieae, with anthers opening by slits, and all remaining Melastomataceae, which have anthers opening by pores. Within the latter, several generic groups, corresponding to traditional tribes, receive solid statistical support, but relationships among them, with one exception, are different from anything predicted on the basis of morphological data. Thus, Miconieae and Merianieae are sister groups, and both are sister to a trichotomy of Bertolonieae, Microlicieae + Melastomeae, and Dissochaeteae + Blakeeae. Sonerileae/Oxysporeae are nested within Dissochaeteae, Rhexieae within Melastomeae, and African and Asian Melastomeae within neotropical Melastomeae. These findings have profound implications for our understanding of melastome morphological evolution (and biogeography), implying, for example, that berries evolved from capsules minimally four times, stamen connectives went from dorsally enlarged to basal/ventrally enlarged, and loss of an endothecium preceded poricidal dehiscence.  相似文献   

14.
15.
Molecular data on development/differentiation and on comparative genomics allow insights into the genetic basis of the evolution of a bodyplan. Sponges (phylum Porifera) are animals that are the (still extant) stem group with the hypothetical Urmetazoa as the earliest common ancestor of all metazoans; they possess the basic features of the characteristic metazoan bodyplan also valid for the animals of the crown taxa. Here we describe three homeobox genes from the demosponge Suberites domuncula whose deduced proteins (HOXa1_SUBDO, HOXb1_SUBDO, HOXc1_SUBDO) are to be grouped with the Antennapedia class of homeoproteins (subclasses TIx-Hox11 and NK-2). In addition, a cDNA encoding a LIM/homeobox protein has been isolated which comprises high sequence similarity to the related LIM homeodomain (HD) proteins in its LIM as well as in its HD domains. To elucidate the potential function of these proteins in the sponge a new in vitro system was developed. Primmorphs which are formed from dissociated cells were grown on a homologous galectin matrix. This galectin cDNA was cloned and the recombinant protein was used for the preparation of the matrix. The galectin/polylysine matrix induced in primmorphs the formation of channels, one major morphogenetic process in sponges. Under such conditions the expression of the gene encoding the LIM/homeobox protein is strongly upregulated, while the expression of the other homeobox genes remains unchanged or is even downregulated. Competition experiments with galactosylceramides isolated from S. domuncula were performed. They revealed that a beta-galactosylceramide, named Sdgal-1, prevented the expression of the LIM gene on the galectin matrix, while Sdgal-2, a diglycosylceramide having a terminal alpha-glycosidically linked galactose, caused no effect on the formation of channels in primmorphs or on LIM expression. This study demonstrates for the first time that an extracellular matrix molecule, galectin, induces a morphogenetic process in sponges which is very likely caused by a LIM/homeobox protein. Furthermore, a new model is introduced (galectin-caused channel formation in sponge primmorphs) to investigate basic pathways, thus allowing new insights into the functional molecular evolution of Metazoa.  相似文献   

16.
Many morphogenetic processes are accomplished by coordinated cell rearrangements. These rearrangements are accompanied by substantial shifts in the neighbor relationships between cells. Here we propose a model for studying morphogenesis in epithelial sheets by directed cell neighbor change. Our model describes cell rearrangements by accounting for the balance of forces between neighboring cells within an epithelium. Cell rearrangement and cell shape changes occur when these forces are not in mechanical equilibrium. We will show that cell rearrangement within the epidermal enveloping layer (EVL) of the teleost fish Fundulus during epiboly can be explained solely in terms of the balance of forces generated among constituent epithelial cells. Within a cell, we account for circumferential elastic forces and the force generated by hydrostatic and osmotic pressure. The model treats epithelial cells as two-dimensional polygons where the mechanical forces are applied to the polygonal nodes. A cell node protrudes or contracts when the nodal forces are not in mechanical equilibrium. In an epithelial sheet, adjacent cells share common boundary nodes; in this way, mechanical force is transmitted from cell to cell, mimicking junctional coupling. These junctional nodes can slide, and nodes may appear or disappear, so that the number of polygonal sides is variable. Computer graphics allows us to compare numerical simulations of the model with time-lapse cinemicroscopy of cell rearrangements in the living embryo, and data obtained from fixed and silver stained embryos. By manipulating the mechanical properties of the model cells we can study the conditions necessary to reproduce normal cell behavior during Fundulus epiboly. We find that simple stress relaxation is sufficient to account for cell rearrangements among interior cells of the EVL when they are isotropically contractile. Experimental observations show that the number of EVL marginal cells continuously decreases throughout epiboly. In order for the simulation to reproduce this behavior, cells at the EVL boundary must generate protrusive forces rather than contractile tension forces. Therefore, the simulation results suggest that the mechanical properties of EVL marginal cells at their leading edge must be quite different from EVL interior cells.  相似文献   

17.
18.
19.
This paper proposes a model for the expected probability distribution for a certain class of biological structures. In particular, a model is derived for the distribution of lengths of helices, sheets, turns, and coils as a function of the length of the structure divided by the length of the protein it is contained in. A fit between the derived lognormal function and the structures for some proteins whose three-dimensional structure is known was significant. The fit produces fundamental parameters particular to each structure type that are related to the underlying structure and its morphogenesis. The importance of the result is that a universal mathematical distribution can be used to explain certain protein morphogeneses. Also, these fundamental parameters can be used as an aid in predicting whether a given sequence is a particular secondary structure or not, without a knowledge of its three-dimensional structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号