首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonsyndromic hearing loss is one of the most genetically heterogeneous traits known. A total of 30 autosomal dominant nonsyndromic hearing-loss loci have been mapped, and 11 genes have been isolated. In the majority of cases, autosomal dominant nonsyndromic hearing loss is postlingual and progressive, with the exception of hearing impairment in families in which the impairment is linked to DFNA3, DFNA8/12, and DFNA24, the novel locus described in this report. DFNA24 was identified in a large Swiss German kindred with a history of autosomal dominant hearing loss that dates back to the middle of the 19th century. The hearing-impaired individuals in this kindred have prelingual, nonprogressive, bilateral sensorineural hearing loss affecting mainly mid and high frequencies. The DFNA24 locus maps to 4q35-qter. A maximum multipoint LOD score of 11.6 was obtained at 208.1 cM at marker D4S1652. The 3.0-unit support interval for the map position of this locus ranges from 205.8 cM to 211.7 cM (5.9 cM).  相似文献   

2.
The sixteenth gene to cause autosomal dominant nonsyndromic hearing loss (ADNSHL), DFNA16, maps to chromosome 2q23-24.3 and is tightly linked to markers in the D2S2380-D2S335 interval. DFNA16 is unique in that it results in the only form of ADNSHL in which the phenotype includes rapidly progressing and fluctuating hearing loss that appears to respond to steroid therapy. This observation suggests that it may be possible to stabilize hearing through medical intervention, once the biophysiology of deafness due to DFNA16 is clarified. Especially intriguing is the localization of several voltage-gated sodium-channel genes to the DFNA16 interval. These cationic channels are excellent positional and functional DFNA16 candidate genes.  相似文献   

3.
近亲结婚所致一遗传性非综合征型耳聋家系的调查   总被引:1,自引:1,他引:0  
舒安利  聂玉正 《遗传》2005,27(4):553-556
耳聋是一种最常见的人类感觉系统缺陷, 在已发现的遗传性耳聋中,有70%的属于非综合征型听力缺损。据估计非综合征型遗传性耳聋基因总数在100个以上,目前已经确定了近80个非综合征型遗传性耳聋的遗传位点,其中23个基因已经被成功克隆。文章报道一遗传性非综合征型耳聋家系。该家系中存在2代近亲结婚,共2代13人出现聋哑症状。经遗传分析,该家系的遗传方式与常染色体显性或隐性遗传均不符合,提示此家系中的非综合征型遗传性耳聋可能为线粒体突变所致。  相似文献   

4.
Usher syndrome (USH) is an autosomal recessive disorder associated with sensorineural hearing impairment and progressive visual loss attributable to retinitis pigmentosa. This syndrome is both clinically and genetically heterogeneous. Three clinical types have been described of which type I (USH1) is the most severe. Six USH1 loci have been identified. We report a Palestinian consanguineous family from Jordan with three affected children. In view of the combination of profound hearing loss, vestibular dysfunction, and retinitis pigmentosa in the patients, we classified the disease as USH1. Linkage analysis excluded the involvement of any of the known USH1 loci. A genome-wide screening allowed us to map this novel locus, USH1G, in a 23-cM interval on chromosome 17q24-25. The USH1G interval overlaps the intervals for two dominant forms of isolated hearing loss, namely DFNA20 and DFNA26. Since several examples have been reported of syndromic and isolated forms of deafness being allelic, USH1G, DFNA20, and DFNA26 might result from alterations of the same gene. Finally, a mouse mutant, jackson shaker ( js), with deafness and circling behavior has been mapped to the murine homologous region on chromosome 11.  相似文献   

5.
DFNA23, a novel locus for autosomal dominant nonsyndromic hearing loss, was identified in a Swiss German kindred. DNA samples were obtained from 22 family members in three generations: 10 with hearing impairment caused by the DFNA23 locus, 8 unaffected offspring, and 4 spouses of hearing-impaired pedigree members. In this kindred, the hearing-impaired family members have prelingual bilateral symmetrical hearing loss. All audiograms from hearing-impaired individuals displayed sloping curves, with hearing ability ranging from normal hearing to mild hearing loss in low frequencies, normal hearing to profound hearing loss in mid frequencies, and moderate to profound hearing loss in high frequencies. A conductive component existed for 50% of the hearing-impaired family members. The majority of the hearing-impaired family members did not display progression of hearing loss. The DFNA23 locus maps to 14q21-q22. Linkage analysis was carried out under a fully penetrant autosomal dominant mode of inheritance with no phenocopies. A maximum multipoint LOD score of 5.1 occurred at Marker D14S290. The 3.0-LOD unit support interval is 9.4 cM and ranged from marker D14S980 to marker D14S1046.  相似文献   

6.
Hereditary non-syndromic sensorineural hearing loss (NSSHL) is a genetically highly heterogeneous group of disorders. Autosomal dominant forms account for up to 20% of cases. To date, 39 loci have been identified by linkage analysis of affected families that segregate NSSHL forms in the autosomal dominant mode (DFNA). Investigation of a large Spanish pedigree with autosomal dominant inheritance of bilateral and progressive NSSHL of postlingual onset excluded linkage to known DFNA loci and, in a subsequent genome-wide scan, the disorder locus was mapped to 3q28-29. A maximum two-point LOD score of 4.36 at theta=0 was obtained for marker D3S1601. Haplotype analysis placed the novel locus, DFNA44, within a 3-cM genetic interval defined by markers D3S1314 and D3S2418. Heteroduplex analysis and DNA sequencing of coding regions and exon/intron boundaries of two genes (CLDN16 and FGF12) in this interval did not reveal disease-causing mutations.  相似文献   

7.
常染色体显性遗传非综合征型耳聋致病基因定位研究   总被引:1,自引:0,他引:1  
耳聋具有高度的遗传异质性, 迄今已定位了51个常染色体显性遗传非综合征型耳聋(autosomal dominant non-syndromic sensorineural hearing loss, DFNA)基因位点, 20个DFNA相关基因被克隆.文章收集了一个DFNA巨大家系, 家系中有血缘关系的家族成员共170人, 对73名家族成员进行了详细的病史调查、全身检查和耳科学检查, 提示39人有不同程度的迟发性感音神经性听力下降, 未见前庭及其他系统的异常.应用ABI公司382个常染色体微卫星多态标记进行全基因组扫描连锁分析, 将该家系致聋基因定位于14q12-13处D14S1021-D14S70之间约7.6 cM (3.18 Mb)的区域, 最大LOD值为6.69 (D14S1040), 与已知DFNA9位点有4.7 cM (2.57 Mb)的重叠区, DFNA9致病基因COCH位于重叠区域内.下一步拟进行COCH基因的突变筛查, 以揭示该家系耳聋的分子致病机制.  相似文献   

8.
耳聋具有高度的遗传异质性, 迄今已定位了51个常染色体显性遗传非综合征型耳聋(autosomal dominant non-syndromic sensorineural hearing loss, DFNA)基因位点, 20个DFNA相关基因被克隆。文章收集了一个DFNA巨大家系, 家系中有血缘关系的家族成员共170人, 对73名家族成员进行了详细的病史调查、全身检查和耳科学检查, 提示39人有不同程度的迟发性感音神经性听力下降, 未见前庭及其他系统的异常。应用ABI公司382个常染色体微卫星多态标记进行全基因组扫描连锁分析, 将该家系致聋基因定位于14q12-13处D14S1021-D14S70之间约7.6 cM (3.18 Mb)的区域, 最大LOD值为6.69 (D14S1040), 与已知DFNA9位点有4.7 cM (2.57 Mb)的重叠区, DFNA9致病基因COCH位于重叠区域内。下一步拟进行COCH基因的突变筛查, 以揭示该家系耳聋的分子致病机制。  相似文献   

9.
The tilted (tlt) mouse carries a recessive mutation causing vestibular dysfunction. The defect in tlt homozygous mice is limited to the utricle and saccule of the inner ear, which completely lack otoconia. Genetic mapping of tlt placed it in a region orthologous with human 4p16.3-p15 that contains two loci, DFNA6 and DFNA14, responsible for autosomal dominant, nonsyndromic hereditary hearing impairment. To identify a possible relationship between tlt in mice and DFNA6 and DFNA14 in humans, we have refined the mouse genetic map, assembled a BAC contig spanning the tlt locus, and developed a comprehensive comparative map between mouse and human. We have determined the position of tlt relative to 17 mouse chromosome 5 genes with orthologous loci in the human 4p16.3-p15 region. This analysis identified an inversion between the mouse and human genomes that places tlt and DFNA6/14 in close proximity.  相似文献   

10.
Yu C  Meng X  Zhang S  Zhao G  Hu L  Kong X 《Genomics》2003,82(5):575-579
Nonsyndromic inherited hearing impairment is genetically heterogeneous. Up to now, approximately 51 autosomal dominant loci implicated in nonsyndromic forms of hearing impairment have been reported in humans and 17 causative genes have been identified. Skipping of exon 8 in the DFNA5 gene has been shown to cause hearing impairment in a Dutch family. To our knowledge, no other DFNA5 mutation has been reported in familial or sporadic hearing impairment. Here, we report another mutation in DFNA5, a CTT deletion in the polypyrimidine tract of intron 7. This mutation, just like the previously reported mutation in the Dutch family, leads to skipping of exon 8 of DFNA5. In addition, we prove the existence of a recently identified short isoform of DFNA5, but the 3-nucleotide deletion reported here seems not to affect the function of this short isoform. Because no other mutation in any other part of DFNA5 has ever been described, this finding might indicate that exon 8 of DFNA5 is indispensable for the development of hearing impairment.  相似文献   

11.
Hereditary hearing impairment is an extremely heterogeneous trait, with more than 70 identified loci. Only two of these loci are associated with an auditory phenotype that predominantly affects the low frequencies (DFNA1 and DFNA6/14). In this study, we have completed mutation screening of the WFS1 gene in eight autosomal dominant families and twelve sporadic cases in which affected persons have low-frequency sensorineural hearing impairment (LFSNHI). Mutations in this gene are known to be responsible for Wolfram syndrome or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), which is an autosomal recessive trait. We have identified seven missense mutations and a single amino acid deletion affecting conserved amino acids in six families and one sporadic case, indicating that mutations in WFS1 are a major cause of inherited but not sporadic low-frequency hearing impairment. Among the ten WFS1 mutations reported in LFSNHI, none is expected to lead to premature protein truncation, and nine cluster in the C-terminal protein domain. In contrast, 64% of the Wolfram syndrome mutations are inactivating. Our results indicate that only non-inactivating mutations in WFS1 are responsible for non-syndromic low-frequency hearing impairment.  相似文献   

12.
Hereditary nonsyndromic hearing loss (NSHL) is a highly heterogeneous disorder in humans. Mutations of the transmembrane channel-like (TMC1) gene have been identified as the genetic cause for both autosomal recessive (DFNB7/11) and autosomal dominant (DFNA36) nonsyndromic hearing loss. To evaluate the spectrum and frequency of mutation(s) caused by TMC1 gene in the Korean population, we have performed sequencing analysis of the PCR products amplified from genomic DNA of each proband in 193 unrelated families showing 30 autosomal dominant and 163 autosomal recessive inheritance patterns. As a result, we identified eight different novel sequence variations for the first time in this study, respectively. However, none of these showed co-segregation of phenotype in the families. Therefore, our study suggests that the TMC1 gene is not the cause of nonsyndromic hearing loss in the Korean population.  相似文献   

13.
We performed linkage analysis in a Belgian family with autosomal dominant midfrequency hearing loss, which has a prelingual onset and a nonprogressive course in most patients. We found LOD scores >6 with markers on chromosome 11q. Analysis of key recombinants maps this deafness gene (DFNA12) to a 36-cM interval on chromosome 11q22-24, between markers D11S4120 and D11S912. The critical regions for the recessive deafness locus DFNB2 and the dominant locus DFNA11, which were previously localized to the long arm of chromosome 11, do not overlap with the candidate interval of DFNA12.  相似文献   

14.
Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic dominant deafness. In the cochlea, it is expressed in sensory outer hair cells. A mutation in this gene in a DFNA2 pedigree changes a residue in the KCNQ4 pore region. It abolishes the potassium currents of wild-type KCNQ4 on which it exerts a strong dominant-negative effect. Whereas mutations in KCNQ1 cause deafness by affecting endolymph secretion, the mechanism leading to KCNQ4-related hearing loss is intrinsic to outer hair cells.  相似文献   

15.
We previously mapped a novel autosomal dominant deafness locus, DFNA44, by studying a family with postlingual, progressive, nonsyndromic hearing loss. We report here on the identification of a mutation in CCDC50 as the cause of hearing loss in the family. CCDC50 encodes Ymer, an effector of epidermal growth factor (EGF)-mediated cell signaling that is ubiquitously expressed in different organs and has been suggested to inhibit down-regulation of the EGF receptor. We have examined its expression pattern in mouse inner ear. Western blotting and cell transfection results indicate that Ymer is a soluble, cytoplasmic protein, and immunostaining shows that Ymer is expressed in a complex spatiotemporal pattern during inner ear development. In adult inner ear, the expression of Ymer is restricted to the pillar cells of the cochlea, the stria vascularis, and the vestibular sensory epithelia, where it shows spatial overlap with the microtubule-based cytoskeleton. In dividing cells, Ymer colocalizes with microtubules of the mitotic apparatus. We suggest that DFNA44 hearing loss may result from a time-dependent disorganization of the microtubule-based cytoskeleton in the pillar cells and stria vascularis of the adult auditory system.  相似文献   

16.
A mutation in human DFNA5 is associated with autosomal dominant nonsyndromic hearing impairment. The function of DFNA5 protein remains unknown and no experimental model has been described so far. Here we describe fission yeast Schizosaccharomyces pombe as a model organism for studying the function of heterologously expressed DFNA5. We have expressed wild-type as well as mutant DFNA5 alleles under control of regulatable nmt1 promoter. Yeast cells tolerated expression of wild-type DFNA5, while expression of the mutant DFNA5 allele, which is responsible for nonsyndromic autosomal dominant hearing impairment, led to cell cycle arrest. We identified new rat and horse DFNA5 homologues and we describe a domain of homology shared between DFNA5 and the Mcm10 family of DNA replication proteins. Genetic interactions between heterologously expressed DFNA5 and a fission yeast cdc23 (mcm10) mutant support a possible link between DFNA5 and Mcm10 proteins.  相似文献   

17.
We report the localization of DFNA20, a gene causing dominant, nonsyndromic, progressive hearing loss in a three-generation Midwestern family, to chromosome 17q25. Affected family members show a bilateral, sloping, progressive, sensorineural hearing loss, first evident at 6000 and 8000 Hz, that can be identified in some family members in the early teens and is clearly evident by the early twenties. As age increases, the degree of hearing loss increases with threshold shifts seen at all frequencies. Linkage to known hereditary hearing loss loci was excluded. A genome-wide screen detected positive linkage to D17S784 (LOD(Z) = 6.62; θ = 0). Haplotype analysis refines the DFNA20 critical region to 12 cM between D17S1806 and D17S668. Radiation hybrid mapping with Stanford G3 and TNG panels was used to evaluate the genes ACTG1, GRIN2C, FKHL13, P4HB, SPARC, and ARHGDIA as candidates for DFNA20.  相似文献   

18.
Mutations in the unconventional myosin VI gene, Myo6, are associated with deafness and vestibular dysfunction in the Snell's waltzer (sv) mouse. The corresponding human gene, MYO6, is located on chromosome 6q13. We describe the mapping of a new deafness locus, DFNA22, on chromosome 6q13 in a family affected by a nonsyndromic dominant form of deafness (NSAD), and the subsequent identification of a missense mutation in the MYO6 gene in all members of the family with hearing loss.  相似文献   

19.
We mapped expressed tagged sequences (ESTs) corresponding to two human dynein heavy chain genes: β heavy chain of the outer dynein arm and heavy chain isotype 1B (DYH1B), by using somatic cell hybrids and radiation hybrid panels. The EST for the β heavy chain of the outer dynein arm mapped to chromosome region 7p15, and the EST for DYH1B mapped to 11q13.5. Two loci for nonsyndromic forms of deafness, DFNA5 and DFNA11, have previously been mapped to these two chromosomal regions. Including the gene for the axonemal light chain, hp28, we have mapped three different dynein genes near loci for different forms of nonsyndromic deafness. The hypothesis that mutations in some dynein genes are associated with nonsyndromic deafness should now be tested.  相似文献   

20.
Nonsyndromic hearing loss (NSHL) is the most common type of hearing impairment in the elderly. Environmental and hereditary factors play an etiologic role, although the relative contribution of each is unknown. To date, 39 NSHL genes have been localized. Twelve produce autosomal dominant hearing loss, most frequently postlingual in onset and progressive in nature. We have ascertained a large, multigenerational family in which a gene for autosomal dominant NSHL is segregating. Affected individuals experience progressive hearing loss beginning in the 2d-4th decades, eventually making the use of amplification mandatory. A novel locus, DFNA13, was identified on chromosome 6p; the disease gene maps to a 4-cM interval flanked by D6S1663 and D6S1691, with a maximum two-point LOD score of 6.409 at D6S299.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号