首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of radiation induced damage in mouse intestine by WR-2721   总被引:3,自引:0,他引:3  
Intestinal protection in mice against radiation injury by WR-2721 (300 mg/kg body wt, i.p., 30 min before irradiation) was studied after whole body gamma irradiation (0.5, 1.5, 3.0, 4.5, or 6.0 Gy). Crypt survival and induction of apoptosis, and abnormal mitoses in crypt cells in the jejunum were studied on day 1, 3 and 7 after irradiation. Irradiation produced a significant decrease in crypt survival, whereas apoptosis and abnormal mitoses showed a significant increase from sham-treated control animals. Maximum changes in all the parameters were observed on day 1 after irradiation and the effect increased linearly with radiation dose. There was recovery at later intervals, which was inversely related to radiation dose. WR-2721 pre-treatment resulted in a significant increase in the number of surviving crypts, whereas the number of apoptotic cells in the crypts showed a significant decrease from respective irradiated controls on day 1 after exposure. The recovery was also faster in WR-2721 pre- treated animals. It is concluded that WR-2721 protects against gastrointestinal death by reducing radiation induced cell death, thereby maintaining a higher number of stem cells in the proliferating compartment.  相似文献   

2.
The regulatory role of estrogen on cell population kinetics in the descending colon was studied in intact female and ovariectomized mice. In the colonic crypts from intact mice, the crypt size (the number of epithelial cells per crypt column) and the proliferative activity of epithelial cells fluctuated slightly during the estrous cycle. Peak cellularity per crypt column was exhibted during estrus and early diestrus, whereas peaks in labeling index were seen during estrus and late metestrus. While the population size of mucous cells showed a minimal variation, the number of proliferative vacuolated cells per crypt column varied inversely with that of differentiated columnar cells during estrous cycle. The vacuolated cells were increased in number in the preovulatory phase and the columnar cells in the postovulatory phase. Three weeks after bilateral ovariectomy, the colonic crypt appeared to reach a new steady state, which was characterized by a small crypt size, a decrease in the number of differentiated cells, an increase in the relative number of proliferative cells and a relative increase in the proliferative activity of the crypt as compared to intact mice. When ovariectomized mice were treated with estrogen, the number of 3H-thymidine-labeled cells in the crypt was decreased as compared to untreated ovariectomized mice, the decrease being greater after a single injection than after multiple injections of estrogen, and the vacuolated-columnar cell line being affected more than mucous cell line. Meanwhile, the crypt size as well as the population size of differentiated cells in the crypt failed to return to normal after estrogen treatments. Thus, estrogen did not promote differentiation of epithelial cells in the crypt.  相似文献   

3.
The main developmental event in the colorectal mucosa during post-natal growth is a dramatic increase in the number of crypts of Lieberkühn, resulting from a longitudinal fission of pre-existing crypts. In the present study, the kinetic aspects of this process have been analysed, using extensive gland and cell counts involving the entire colon and rectum of 24 male BD IX rats distributed into four age groups. The number of crypts was found to rise from an average 4652 to 423,800 between birth and adulthood; the corresponding ratios of bifurcating glands were 13.55 and 0.67%, respectively. Crypt production attained its maximum 18 days after birth with an hourly increment of 519 units. the time spent by replicating glands in the bifurcating stage (‘fission time’) averaged 6.9–10.5 hr. The mean number of epithelial cells per crypt rose from 249 in 4-day old rats to 635 in adults. the estimated total number of epithelial cells in the colon and rectum was one million in newborns and 248 million in adults. the increment in cell number peaked 3 weeks after birth with a value of 310,000/hr. During the first few days after birth, all cells produced in the epithelium were retained. Cell loss thereafter rapidly progressed, reaching 70% of the cell production in 3-week old animals.  相似文献   

4.
The thyroid hormone (TH) controls, via its nuclear receptor, TH receptor-alpha1 (TRalpha1), intestinal crypt cell proliferation in the mouse. In order to understand whether this receptor also plays a role in intestinal regeneration after DNA damage, we applied a protocol of gamma-ray irradiation and monitored cell proliferation and apoptosis at several time points. In wild-type mice, the dose of 8 Gy induced cell cycle arrest and apoptosis in intestinal crypts a few hours after irradiation. This phenomenon reverted 48 h after irradiation. TRalpha(0/0) mutant mice displayed a constant low level of proliferating cells and a high apoptosis rate during the period of study. At the molecular level, in TRalpha(0/0) animals we observed a delay in the p53 phosphorylation induced by DNA damage. In our search for the expression of the protein kinases responsible for p53 phosphorylation upon irradiation, we have focused on DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The number of cells expressing DNA-PKcs in crypts remained high 48 h after irradiation, specifically in TRalpha mutants. Altogether, in TRalpha(0/0) animals the rate of apoptosis in crypt cells remained high, apparently due to an elevated number of cells still presenting DNA damage. In conclusion, the TRalpha gene plays a role in crypt cell homeostasis by regulating the rate of cell renewal and apoptosis induced by DNA damage.  相似文献   

5.
Recent epidemiological studies have demonstrated a correlation between regular aspirin (acetylsalicylic acid) use and decrease risk for the development of fatal colorectal cancer. An increase in the size of the cell proliferation compartment in colorectal crypts has been correlated with an increased risk for the development of colon cancer in animals and in humans. To determine if acetylsalicylic acid acts to decrease the size of the cell proliferation compartment, young (3 month) and old (22 month) rats were treated intragastrically with: 1 the vehicle for acetylsalicylic acid delivery (0.25% wt/vol carboxymethylcellulose in 0.15 N HCI), 2 a single dose of acetylsalicylic acid (100 mg/kg), or 3 acetylsalicylic acid (30 mg/kg) given daily for 30 days. One day after the last treatment, colons were resected, fixed, sectioned and mounted on slides for immunohistochemical staining with a monoclonal antibody to proliferating cell nuclear antigen to assess cell proliferation parameters in the colonic crypts. The results were subjected to three way analysis of variance to assess the effects of: 1 rat age, 2 acute or chronic acetylsalicylic acid treatment, and 3 location of crypts over and away from aggregates of lymphoid nodules on the crypt proliferative parameters. Results demonstrated that: 1 acetylsalicylic acid treatment caused an overall decrease in the proliferative zone height, as measured in number of cells in the crypt column, 2 that crypts located over aggregates of lymphoid nodules had significantly higher proliferative activity than crypts located away from aggregates of lymphoid nodules, and 3 after chronic acetylsalicylic acid treatment there was a greater suppression of proliferative zone height in the crypts of old rats than in the crypts of young rats. In conclusion, acute and chronic intragastric delivery of acetylsalicylic acid caused an overall downward shift in the cell proliferation compartment of colonic crypts of young and of old rats. Whether or not acetylsalicylic acid administration will cause the same proliferative zone height response in carcinogen-treated rats is not yet established.  相似文献   

6.
P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.  相似文献   

7.
The survival of mouse colon crypts after X-irradiation has been studied by the microcolony technique. The Do for crypt survival was 266 rad after whole-body irradiation in air, but when the colon alone was irradiated, the Do was 340 rad. In mice which were breathing 95 per cent oxygen, the Do values were 238 rad for whole-body and 302 rad for colon irradiation. The survival curves were all extrapolated to the same number, and the DQ was also increased with colon irradiation. There was, therefore an enhancement of colon crypt survival of about 27 per cent by local as opposed to whole-body irradiation. These results might be explained by a circulating repair promoter or by the production of a toxin after whole-body irradiation.  相似文献   

8.
The influence of experimental bypass on the epithelial cell kinetics in the rat descending colon was studied. It was found that the number of cells per crypt was markedly reduced at 6 weeks after bypass. The percentage of labelled crypt cells, 1 h after 3HTdR, and the distribution of labelled cells in the crypt was normal. Also the life span of the epithelial cells was the same in control and bypassed colon. The response of crypt cell proliferation to ischaemia-induced cell loss in the bypassed descending colon was similar to the one previously described for normal descending colon. This indicates that the absence of the normal luminal contents does not result in a different response of colonic crypts to induced cell loss. Furthermore, it was found that the number of cells per crypt and the proliferative activity did not change in the transverse colon after temporary ischaemia of the bypassed descending colon. This indicates that the increase in crypt cell proliferation after ischaemia-induced cell loss is a local response.  相似文献   

9.
Colonic epithelial proliferation was investigated in three groups of rats, aged 3, 60 and 121 weeks. As reported in previous work, the crypts were markedly longer in the young rats, and the number of labelled cells per crypt was significantly greater. There was an upward movement of the marker positions derived from the distribution of labelled cells within the crypt of the young rats. This was a consequence of the increased crypt length, so that the growth fraction, as expressed as a percentage of crypt length, was the same. The proliferative changes between the young rats and the other aged rats were therefore effected by altering the size of the crypts, while maintaining the kinetic organisation. There was no evidence of any proliferative changes or changes in the growth fraction when the colons of the old rats were compared with those of the 60 week old rats.  相似文献   

10.
Colonic epithelial proliferation was investigated in three groups of rats, aged 3, 60 and 121 weeks. As reported in previous work, the crypts were markedly longer in the young rats, and the number of labelled cells per crypt was significantly greater. There was an upward movement of the marker positions derived from the distribution of labelled cells within the crypt of the young rats. This was a consequence of the increased crypt length, so that the growth fraction, as expressed as a percentage of crypt length, was the same. The proliferative changes between the young rats and the other aged rats were therefore effected by altering the size of the crypts, while maintaining the kinetic organisation. There was no evidence of any proliferative changes or changes in the growth fraction when the colons of the old rats were compared with those of the 60 week old rats.  相似文献   

11.
Keratinocyte growth factor (KGF) administered on a daily basis for 3 or more days can result in dramatic changes in tissue architecture, particularly the thickness in oral epithelia, and can afford protection against the cytotoxic effects of radiation on the clonogenic stem cells in the crypts. This protection of intestinal stem cells (increased numbers of surviving crypts) is reflected in an increased survival of animals exposed to a lethal dose of irradiation. The mechanisms underlying these effects are not clear. The present experiments were designed to investigate the nature of any proliferative changes induced in the crypts of the small intestine by protracted exposure to KGF. Tritiated thymidine or bromodeoxyuridine labeling showed statistically significant increases in labeling in the stem cell zone of the crypt, with a concomitant reduction in labeling in the upper regions of the crypt corresponding to the late-dividing transit population. The increase in labeling in the lower regions of the crypt was also observed with Ki-67 staining, but the reduction in the upper regions of the crypt seen with tritiated thymidine was not observed with Ki-67. Metaphase arrest data suggest that the rate of progression through the cell cycle is essentially the same in KGF-treated animals as in controls, but there is a statistically significant increase in the number of mitotic events per crypt. Double labeling studies suggest that, at certain times of the day, there is a greater influx into S phase than efflux. The data overall indicate that KGF induces some complex proliferative changes in the intestinal crypts and are consistent with the hypothesis that the radioprotection may be afforded, at least in part, by a KGF-induced increase in stem cell numbers and/or increases in the number of stem cells in the S phase of the cell cycle. This alteration in the homeostasis of the crypt is compensated for by a foreshortening of the dividing transit lineage.  相似文献   

12.
Late radiation effects were investigated in the mouse small intestine after a daily fractionated radiation treatment. Mice were given 14 X 3 Gy in 2 weeks over a partial abdominal irradiation field. There was evidence for late injury in the intestinal epithelium, the submucosa, and the subserosa. Late damage in the epithelium was shown histologically by a reduced crypt number and villus atrophy at 3 and 6 months but not at 24 h after the end of treatment. The reduction in crypt number was significant in the ileum at 3 and 6 months after irradiation: 100 +/- 4 and 98 +/- 5 (SEM) per circumference, respectively, versus 132 +/- 3 and 146 +/- 6 in age-matched controls (P less than 0.01, t test). The mitotic activity in the crypts of the irradiated animals was significantly increased at all investigated times, suggesting a prolonged but insufficient compensatory response to maintain the mucosal integrity. The repercussion on intestinal epithelial function was, at least in part, reflected by a progressively reduced body weight gain up to 5 g at 3 months after treatment. The ability of the surviving crypt stem cells to form microcolonies after irradiation, however, was not impaired. Evidence for injury in the submucosa was provided from macroscopic and histological examination. Macroscopically, at 6 months after treatment, narrowed and rigid bowel segments surrounded by fibrotic adhesions were observed, causing partial intestinal obstruction. In addition, sometimes focal areas of hemorrhage and infarction in small bowel segments were present. Histologically, diffuse and pronounced submucosal edema without increased fibrosis was seen, together with markedly dilated small blood vessels in focal areas of macroscopic intestinal infarction. The intestinal perfusion, as assessed by 86Rb extraction, was significantly but transiently reduced at 3 months after irradiation. These data suggest mainly late effects in the small intestine after this daily fractionated irradiation treatment. The reduced number of epithelial cells and the submucosal edema are possibly mediated by radiation injury in the intestinal microvasculature.  相似文献   

13.
The sensitivity of the target cells responsible for the gastrointestinal syndrome in mice was deduced from the steepness of the dose-survival curve for mice assessed on Day 7 after irradiation. The D0 value was 1.25 +/- 0.22 Gy, virtually identical to the value of 1.23 +/- 0.08 measured for microcolony-forming cells (clonogens) over about the same range of dose in concurrent experiments. The survival of clonogens was similar when assayed in mice surviving to Days 3, 4, or 5, but clonogenic sensitivity was lower when assessed on Day 7. This was shown at one dose to be due largely to a selection of mice with high colony counts with only a small contribution from crypt budding. The LD50 for mice corresponded to a surviving fraction of crypts of about 0.35. An injection of 5 mg streptomycin sulphate ip daily for 5 days after irradiation increased the latent period by about 1 day, increased the LD50 by about 1.4 Gy, but did not significantly change the survival of clonogens. These studies are the first to test and satisfy the interpretation of a dose-response curve for animal survival in terms of "target cell" survival, where measurements of both are made over a similar range of dose in concurrent experiments.  相似文献   

14.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkuhn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

15.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkiihn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

16.
High specific activity tritiated thymidine (HSA-[3H]TdR) and colcemid were given in cytotoxic doses and regimens to B6CF1/Anl mice. The number of cells per intestinal crypt was reduced by the S-phase-specific (HSA-[3H]TdR and the metaphase blocking and cytotoxic effect of multiple injections of colcemid. In 50-day-old mice, the cytotoxic effect of multiple injections of colcemid reduced both the number of cells per crypt and the clonogenic cell survival. However, the number of surviving intestinal clonogenic or stem cells, assayed by the microcolony technique, did not change in 110--130-day old mice. These data suggest that most of the cells at risk from these cytotoxic agents are not clonogenic in adult 110--130-day old mice but are the cells in amplification division. However, since the stem cells of young mice are more susceptible to colcemid, they are apparently in a more rapid cell cycle than those of older mice. The clonogenic cell survival measured in 110--130-day old mice after a single radiation dose of 14 Gy (1400 rad) responded in a non-linear way to increasing time of continuous colcemid cytotoxicity. These data suggest that the intestinal stem cells can respond to amplification compartment cell death by a shortening of their cell cycle and thus, over time, the number of stem cells at risk to colcemid cytotoxicity increases.  相似文献   

17.
The biological activities of PGE(2) are mediated through EP receptors (EP(1)-EP(4)), plasma membrane G protein-coupled receptors that differ in ligand binding and signal-transduction pathways. We investigated gastrointestinal EP(2) receptor expression in adult mice before and after radiation injury and evaluated intestinal stem cell survival and crypt epithelial apoptosis after radiation injury in EP(2) null mice. EP(2) was expressed throughout the gut. Intestinal EP(2) mRNA increased fivefold after gamma-irradiation. Crypt survival was diminished in EP(2)-/- mice (4.06 crypts/cross section) compared with wild-type littermates (8.15 crypts/cross section). Radiation-induced apoptosis was significantly increased in EP(2)-/- mice compared with wild-type littermates. Apoptosis was 1.6-fold higher in EP(2) (-/-) mice (5.9 apoptotic cells/crypt) than in wild-type mice (3.5 apoptotic cells/crypt). The EP(2) receptor is expressed in mouse gastrointestinal epithelial cells and is upregulated following radiation injury. The effects of PGE(2) on both crypt epithelial apoptosis and intestinal crypt stem cell survival are mediated through the EP(2) receptor.  相似文献   

18.
Variations in the number of radiation-induced morphologically dead or dying cells (apoptotic cells) in the crypts in the small intestine of the mouse have been studied throughout a 24-h period under a normal light regimen (light on, 07.00-19.00 h; light off, 19.00-07.00 h). A clear circadian rhythm was displayed in the apoptotic incidence 3 or 6 h after irradiation for each gamma-ray dose studied (range 0.14-9.0 Gy). The most prominent circadian rhythm was obtained after 0.5 Gy. The peak time of day for inducing apoptosis was 06.00-09.00 h, and the trough occurred at 18.00-21.00 h. Some mice were also transferred to a room with the light cycle reversed, and were irradiated on different days after the transfer. The apoptosis induced by 0.5 Gy or 9.0 Gy, or the number of surviving crypts (microcolonies) after 11.0 Gy or 13.0 Gy was examined. The transition point for reversal (i.e. the switch time from the normal-light pattern to the reversed-light pattern) of the circadian rhythm in apoptosis (after 0.5 Gy) occurred 7 days after the transfer and the rhythm was reversed by 14 days. The rhythm for crypt survival (i.e. for clonogenic cell radiosensitivity) was disturbed on 1 day and the transition point for reversal occurred 3 days after the transfer. The rhythm became reversed by 7 days. These observations are discussed in relation to the identity of clonogenic cells, (functional) stem cells, proliferating transit cells and the cells sensitive to small doses of radiation (i.e. hypersensitive cells) in the crypt.  相似文献   

19.
IL-7 is a critical cytokine in the development of T and B cells but little is known about its activity on nonhematopoietic cells. An unexpected finding was noted in allogeneic bone marrow transplant studies using IL-7 receptor null (IL-7R alpha(-/-)) mice as recipients. These mice exhibited a significantly greater weight loss after total body irradiation compared with wild type, IL-7R alpha(+/+), mice. Pathological assessment indicated greater intestinal crypt damage in IL-7R alpha(-/-) recipients, suggesting these mice may be predisposed to gut destruction. Therefore, we determined the effect of the conditioning itself on the intestinal tract of these mice. IL-7R alpha(-/-) mice and IL-7R alpha(+/+) mice were irradiated and examined for lesions and apoptosis within the small intestine. In moribund animals, IL-7R alpha(-/-) mice had extensive damage in the small intestine, including marked ablation of the crypts and extreme shortening of villi following 1500 cGy total body irradiation. In contrast, by 8 days after irradiation, the small intestines of IL-7R alpha(+/+) mice had regenerated as distinguished by normal villus length and hyperplastic crypts. Following 750 cGy irradiation, IL-7R alpha(-/-) mice had a higher proportion of apoptotic cells in the crypts and an accompanying increase in the pro-apoptotic protein Bak was expressed in intestinal epithelial cells. These results demonstrate the increased radiosensitivity of intestinal stem cells within the crypts in IL-7R alpha(-/-) mice and a role for IL-7 in the protection of radiation-induced apoptosis in these same cells. This study describes a novel role of IL-7 in nonhematopoietic tissues.  相似文献   

20.
Within 3-6 h of small doses of radiation (gamma-rays) the number of dead cells (apoptotic cells) in the crypts of the small intestine reaches peak values. These return to normal levels only after times later than 1 day. After higher doses elevated levels of cell death persist for longer times. The dead cells first occur most frequently at the lower positions of the crypt (median value for the distribution of apoptotic fragments is about cell position 6). At later times more dead cells are observed at higher positions. Two doses of radiation separated by various time intervals have been used to investigate when after irradiation the cell population susceptible to acute cell death is re-established. Dead cells were scored 3 or 6 h after the second dose. The yield of dead cells after two doses represents the sum of the dead cells produced by, and persisting from, the first dose and new apoptotic cells induced by the second dose. Since the temporal and dose-dependence aspects of the dead-cell yield after the first dose alone is known, the additional dead cells attributable to the second dose alone can be determined by subtraction. Within 1-2 days of small doses (0.5 Gy) the sensitive cells, recognized histologically as apoptotic cells, are re-established at the base of the crypt (around cell position 6). After higher doses (9.0 Gy) they are not re-established until about the fourth day after irradiation. Even in the enlarged regenerating crypts the sensitive cells are found at the same position at the crypt base. It has been estimated that the crypt contains five or six cells that are susceptible to low doses (0.5 Gy) (hypersensitive cells) and up to a total of only seven or eight susceptible cells that can be induced by any dose to enter the sequence of changes implicit in apoptosis. Between 4 and 10 days after an initial irradiation of 9.0 Gy the total number of susceptible cells increased from seven to eight to about 10 to 13 per crypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号