首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using isolated submucosal glands from feline trachea, we examined the effect of vasoactive intestinal peptide (VIP) on mucus glycoprotein secretion and glandular contraction by measuring released radiolabeled glycoconjugates and induced tension, respectively. VIP (10(-10) to 10(-6) M) produced a dose-dependent increase in [3H]glycoconjugate release of up to 300% of controls, which was inhibited by VIP antiserum and not inhibited by atropine, propranolol, or phentolamine. VIP at a low concentration (10(-9) M), which did not produce any significant increases over controls, produced a 2.4- to 5-fold augmentation of the glycoconjugate release induced by 10(-9) to 10(-7) M methacholine (MCh). Atropine or VIP antiserum abolished the augmentation. VIP did not produce any alteration in isoproterenol- or phenylephrine-evoked glycoconjugate secretion. VIP (up to 10(-5) M) did not produce any alteration in the tension, even when the gland had contracted with MCh, or any augmentation of contraction induced by MCh (10(-9) to 10(-7) M). These results indicate that VIP induces mucus glycoprotein release from secretory cells and also that it potentiates the secretion induced by cholinergic stimulation.  相似文献   

2.
Contractility of isolated single submucosal gland from trachea   总被引:1,自引:0,他引:1  
We isolated single submucosal glands from canine and feline trachea. Examination by light and electron microscope showed that these isolated glands consist mainly of glandular tissue, and no smooth muscle. Cell components in the glandular tissue were ultrastructurally normal, and myoepithelial cells surrounded acini and secretory tubules. In response to methacholine, the mucus was squeezed from the tip of the collecting ducts in coincidence with the contraction of the glands. The contractile properties of isolated single glands were examined with a force transducer. Cholinergic agents (methacholine and acetylcholine) as well as 40-150 mM K+ showed a dose-response relationship and induced tension up to 12 mg. The length-tension relationship was also observed. The removal of Ca2+ from the medium eliminated contractile response. Caffeine induced approximately 30% of the response to methacholine, and phenylephrine, a tension less than 30% of that with methacholine. These findings suggest that squeezing of mucus due to the contraction of myoepithelial cells has an important effect on secretory response of airway submucosal glands.  相似文献   

3.
We studied the effect of airway epithelium on mucus secretion by use of an isolated tracheal submucosal gland preparation reported previously (J. Appl. Physiol. 60: 1237-1247, 1986). Mucus glycoconjugate release from submucosal glands of feline trachea was examined using [3H]glucosamine as a mucus precursor. Isolated glands showed significantly higher secretory responses to cholinergic, alpha-, and beta-adrenergic agonists and dibutyryladenosine 3',5'-cyclic monophosphate (average 400% of control) than the conventional tracheal mucosal explants, which contained epithelium and submucosal tissues in addition to submucosal glands (average 160% of control). The addition of isolated epithelium depressed the secretory response of isolated glands to the same level as that of tracheal explants. However, the supernatant from isolated epithelium failed to inhibit secretory responses to methacholine in isolated glands, suggesting that the epithelium-derived inhibitory factor to secretion may be short-lived. Leukotriene D4 antagonist (FPL 55712), cyclooxygenase and/or lipoxygenase inhibitors (indomethacin or BW 755C) caused no significant change in the inhibitory action of epithelium, suggesting that the inhibition is not due to arachidonic acid metabolites. The newly found secretory inhibitory action of epithelium is of particular interest in the pathogenesis of hypersecretion associated with epithelial damage.  相似文献   

4.
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161-3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC(50) = 19 μM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTR(inh)-172, but not by niflumic acid. Serosal SubP (EC(50) = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a V(max) similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO(3)(-), and 85% by bumetanide + removal of HCO(3)(-); it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca(2+)-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca(2+) concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca(2+)-activated Cl(-) channels.  相似文献   

5.
To determine the autonomic innervation to myoepithelial cells of submucosal gland, we applied electrical field stimulation (FS) to the intrinsic nerves in isolated submucosal glands from feline tracheae. FS induced contraction that was voltage or frequency dependent and abolished by pretreatment with tetrodotoxin. DMPP (1,1-dimethyl-4-phenylpiperazinium iodide) did not produce any significant contraction, and pretreatment with hexamethonium did not alter the response to FS. Atropine inhibited the contractile response to FS and neostigmine augmented the response to FS. Serotonin also augmented the response to FS, whereas the response to methacholine remained unchanged in the presence of serotonin. Phentolamine reduced the response to FS by 15% of control, whereas propranolol induced no significant changes in the response to FS. No significant inhibitory responses were observed by FS. Our findings indicate that the contraction of tracheal submucosal glands is mediated mainly by cholinergic nerves via muscarinic receptors and in small part by adrenergic nerves via alpha-receptors, and serotonin potentiates the contractile response to FS at the postganglionic nerve.  相似文献   

6.
Human airways and glands express the anion channel cystic fibrosis transmembrane conductance regulator, CFTR, and the epithelial Na(+) channel, ENaC. Cystic fibrosis (CF) airway glands fail to secrete mucus in response to vasoactive intestinal peptide or forskolin; the failure was attributed to loss of CFTR-mediated anion and fluid secretion. Alternatively, CF glands might secrete acinar fluid via CFTR-independent pathways, but the exit of mucus from the glands could be blocked by hyperabsorption of fluid in the gland ducts. This could occur because CFTR loss can disinhibit ENaC, and ENaC activity can drive absorption. To test these two hypotheses, we measured single gland mucus secretion optically and applied ENaC inhibitors to determine whether they augmented secretion. Human CF glands were pretreated with benzamil and then stimulated with forskolin in the continued presence of benzamil. Benzamil did not rescue the lack of secretion to forskolin (50 glands, 6 CF subjects) nor did it increase the rate of cholinergically mediated mucus secretion from CF glands. Finally, neither benzamil nor amiloride increased forskolin-stimulated mucus secretion from porcine submucosal glands (75 glands, 7 pigs). One possible explanation for these results is that ENaC within the gland ducts was not active in our experiments. Consistent with that possibility, we discovered that human airway glands express Kunitz-type and non-Kunitz serine protease inhibitors, which might prevent proteolytic activation of ENaC. Our results suggest that CF glands do not display excessive, ENaC-mediated fluid absorption, leaving defective, anion-mediated fluid secretion as the most likely mechanism for defective mucus secretion from CF glands.  相似文献   

7.
HJ Lee  YM Yang  K Kim  DM Shin  JH Yoon  HJ Cho  JY Choi 《PloS one》2012,7(8):e43188
Protease-activated receptor 2 (PAR2), a G protein-coupled receptor expressed in airway epithelia and smooth muscle, plays an important role in airway inflammation. In this study, we demonstrated that activation of PAR2 induces mucus secretion from the human airway gland and examined the underlying mechanism using the porcine and murine airway glands. The mucosa with underlying submucosal glands were dissected from the cartilage of tissues, pinned with the mucosal side up at the gas/bath solution interface of a physiological chamber, and covered with oil so that secretions from individual glands could be visualized as spherical bubbles in the oil. Secretion rates were determined by optical monitoring of the bubble diameter. The Ca(2+)-sensitive dye Fura2-AM was used to determine intracellular Ca(2+) concentration ([Ca(2+)](i)) by means of spectrofluorometry. Stimulation of human tracheal mucosa with PAR2-activating peptide (PAR2-AP) elevated intracellular Ca(2+) and induced glandular secretion equal to approximately 30% of the carbachol response in the human airway. Porcine gland tissue was more sensitive to PAR2-AP, and this response was dependent on Ca(2+) and anion secretion. When the mouse trachea were exposed to PAR2-AP, large amounts of secretion were observed in both wild type and ΔF508 cystic fibrosis transmembrane conductance regulator mutant mice but there is no secretion from PAR-2 knock out mice. In conclusion, PAR2-AP is an agonist for mucus secretion from the airway gland that is Ca(2+)-dependent and cystic fibrosis transmembrane conductance regulator-independent.  相似文献   

8.
The airway is kept sterile by an efficient innate defense mechanism. The cornerstone of airway defense is mucus containing diverse antimicrobial factors that kill or inactivate pathogens. Most of the mucus in the upper airways is secreted by airway submucosal glands. In patients with cystic fibrosis (CF), airway defense fails and the lungs are colonized by bacteria, usually Pseudomonas aeruginosa. Accumulating evidence suggests that airway submucosal glands contribute to CF pathogenesis by failing to respond appropriately to inhalation of bacteria. However, the regulation of submucosal glands by the innate immune system remains poorly understood. We studied the response of submucosal glands to the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. These are released into the airway submucosa in response to infection with the bacterium P. aeruginosa and are elevated in CF airways. Stimulation with IL-1β and TNF-α increased submucosal gland secretion in a concentration-dependent manner with a maximal secretion rate of 240 ± 20 and 190 ± 40 pl/min, respectively. The half maximal effective concentrations were 11 and 20 ng/ml, respectively. The cytokine effect was dependent on cAMP but was independent of cGMP, nitric oxide, Ca(2+), or p38 MAP kinase. Most importantly, IL-1β- and TNF-α-stimulated secretion was blocked by the CF transmembrane conductance regulator (CFTR) blocker, CFTRinh172 (100 μmol/l) but was not affected by the Ca(2+)-activated Cl(-) channel blocker, niflumic acid (1 μmol/l). The data suggest, that during bacterial infections and resulting release of proinflammatory cytokines, the glands are stimulated to secrete fluid, and this response is mediated by cAMP-activated CFTR, a process that would fail in patients with CF.  相似文献   

9.
Cystic fibrosis (CF) airway disease arises from defective innate defenses, especially defective mucus clearance of microorganisms. Airway submucosal glands secrete most airway mucus, and CF airway glands do not secrete in response to VIP or forskolin. CFTR, the protein that is defective in CF, is expressed in glands, but immunocytochemistry finds the highest expression of CFTR in either the ciliated ducts or in the acini, depending on the antibodies used. CFTR is absolutely required for forskolin-mediated gland secretion; we used this finding to localize the origin of forskolin-stimulated, CFTR-dependent gland fluid secretion. We tested the hypothesis that secretion to forskolin might originate from the gland duct rather than or in addition to the acini. We ligated gland ducts at various points, stimulated the glands with forskolin, and monitored the regions of the glands that swelled. The results supported an acinar rather than ductal origin of secretion. We tracked particles in the mucus using Nomarski time-lapse imaging; particles originated in the acini and traveled toward the duct orifice. Estimated bulk flow accelerated in the acini and mucus tubules, consistent with fluid secretion in those regions, but was constant in the unbranched duct, consistent with a lack of fluid secretion or absorption by the ductal epithelium. We conclude that CFTR-dependent gland fluid secretion originates in the serous acini. The failure to observe either secretion or absorption from the CFTR and epithelial Na(+) channel (ENaC)-rich ciliated ducts is unexplained, but may indicate that this epithelium alters the composition rather than the volume of gland mucus.  相似文献   

10.
Muscarinic stimulation of submucosal glands in swine trachea   总被引:1,自引:0,他引:1  
The properties of muscarinic acetylcholine receptors (mAChR) on tracheal explants and isolated submucosal gland cells were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and N-[3H]methylscopolamine ([3H]NMS) as ligands. Analysis of competitive displacement of ([3H]NMS binding by pirenzepine demonstrated the presence of M1- (27 +/- 2%) and M2G- (73 +/- 2%) receptors on isolated tracheal submucosal gland cells (TSGC's) in control. Daily administration of diisopropylfluorophosphate (DFP) inhibited cholinesterase activity by greater than 95%. After 7 days of DFP treatment, [3H]QNB binding to intact TSGC's decreased from 14.2 +/- 0.6 to 6.3 +/- 0.8 fmol/10(6) cells; similarly, [3H]NMS binding fell from 8.1 +/- 1.9 to 2.0 +/- 0.8 fmol/10(6) cells. The loss of mAChR's was predominantly of the M2G subtype with the relative proportion dropping to 33%. In addition, 90% of the receptors assumed the high-affinity state for carbachol displacement of [3H]NMS. Mucus secretion was quantitated by measuring the release of 3H-labeled mucus macromolecules from explants of tracheal submucosal glands and isolated cells. Acetylcholine (ACh), 2 X 10(-5) M, stimulated mucus secretion by 2.5 and 2.3 times the basal rate, respectively. Elimination of acetylcholinesterase (AChe) by DFP increased the ACh sensitivity by 18- and 5-fold. Tracheal explants or TSGC's obtained 2 h after an in vivo DFP treatment showed a 6- and 3-fold ACh stimulation. This ACh sensitivity decreased during the continued daily dosing with DFP such that only a 1.3- and 1.1-fold ACh stimulation was apparent after 7 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Secretion rates of >700 individual glands in isolated tracheal mucosa from 56 adult pigs were monitored optically. "Basal" secretion of 0.7 +/- 0.1 nl x min(-1) gland(-1) was observed 1-9 h post-harvest but was near zero on day 2. Secretion to carbachol (10 microm) peaked at 2-3 min and then declined to a sustained phase. Peak secretion was 12.4 +/- 1.1 nl x min(-1) gland(-1); sustained secretion was approximately one-third of peak secretion. Thapsigargin (1 microm) increased secretion from 0.1 +/- 0.05 to 0.7 +/- 0.2 nl x min(-1) gland(-1); thapsigargin did not cause contraction of the trachealis muscles. Isoproterenol and phenylephrine (10 microm each) were ineffective, but vasoactive intestinal peptide (1 microm) and forskolin (10 microm) each produced sustained secretion of 1.0 +/- 0.5 and 1.7 +/- 0.2 nl x min(-1) gland(-1), respectively. The density of actively secreting glands was 1.3/mm(2). Secretion to either carbachol or forskolin was inhibited (approximately 50%) by either bumetanide or HCO(3)(-) removal and inhibited approximately 90% by the combined treatments. Mucus secreted in response to carbachol or forskolin was acidic by approximately 0.2 pH units relative to the bath and remained acidic by approximately 0.1 pH units after bumetanide. The strong secretory response to vasoactive intestinal peptide, the acidity of [cAMP](i)-stimulated mucus, and its inhibition by bumetanide were unexpected.  相似文献   

12.
For many years it has been speculated that the physiological function of Brunner's glands was to secrete mucus to protect the proximal duodenum from the corrosive effects of acidified gastric juice. However the control of Brunner's gland secretion remains an enigma. Some evidence exists which indicates both cholinergic and adrenergic innervation of these glands, but current consensus weighs heavily in favor of a hormonal stimulus for glandular secretion. This is based in part on evidence obtained from denervated Brunner's gland pouches following a feeding stimulus. A number of hormones and hormone-like substances have been investigated as possible mediators in this secretory response, however, no specificity was ever demonstrated. The inability to pinpoint a given substance as a common mediator can be attributed to the fact that most active agents employed also affect duodenal motility. We present evidence that Brunner's gland secretion can be observed to be a diphasic response. The initial, transient response is always observed in the presence of increased duodenal motility. The sustained response does not require duodenal motility and is probably hormonally mediated.  相似文献   

13.
Mast cell chymase. A potent secretagogue for airway gland serous cells   总被引:6,自引:0,他引:6  
Submucosal glands are the major sources of airway secretions in most mammals. Mast cells are abundant in the environment of airway submucosal glands and are rich sources of secreted proteases. To investigate the hypothesis that mast cell proteases stimulate airway gland secretion, we studied the ability of the two major mast cell granule proteases, chymase and tryptase, to cause secretion of 35S-labeled macromolecules from a line of cultured bovine airway gland serous cells. Mast cell chymase and tryptase were purified from dog mastocytoma cells. Chymase markedly stimulated serous cell secretion in a concentration-dependent fashion with a threshold of 10(-10) M, whereas tryptase had no effect. The response to 10(-8) M chymase (1530 +/- 80% over base line) was approximately 10-fold higher than that evoked by other agonists such as histamine and isoproterenol. The predominant 35S-labeled macromolecule released by chymase was chondroitin sulfate proteoglycan, the glycoconjugate present in serous cell secretory granules. The response to chymase was non-cytotoxic and was blocked by active site inhibitors of chymase (soybean trypsin inhibitor and chymostatin) and by inhibitors of cellular energy metabolism (azide,2,4-dinitrophenol, dicumarol). Supernatant obtained by degranulation of mastocytoma cells caused a secretory response of comparable magnitude to that caused by chymase. These findings demonstrate that chymase, but not tryptase, is a potent secretagogue for airway gland serous cells, and they suggest a possible role for chymase-containing mast cells in the pathogenesis of airway hypersecretion.  相似文献   

14.
Vasoactive effects of substance P on isolated rabbit pulmonary artery   总被引:1,自引:0,他引:1  
The vasoactive properties of substance P (SP) were studied in isolated rabbit pulmonary artery (PA) segments in vitro. In the absence of active base-line tone, noncumulative administration of SP (10(-11) to 10(-4) M) produced dose-dependent increases in PA tension. The peak isometric tension (Tmax) with SP was similar to the Tmax response to epinephrine; however, the doses of the agonist producing a threshold contraction and 25% of Tmax (ED25) were significantly lower for SP. In the presence of active base-line tone, induced by epinephrine or 5-hydroxytryptamine, SP produced transient PA relaxation which was directly related to the magnitude of the precontracted PA tension. Blockade of neurotransmission with tetrodotoxin (1 microgram/ml) and antagonists to alpha 1-adrenergic and histamine receptor binding had no effect on the contractile response to SP. On the other hand, PA contraction to an ED50 dose of SP was 1) inhibited by a mean of 33 +/- 10% (SE) following pretreatment with the cholinesterase inhibitor, neostigmine (10(-6) M) and 2) augmented by 52 +/- 21% with the cholinergic antagonist, atropine (10(-4) M). The latter also completely blocked the relaxation response to SP in precontracted PA. Similarly, removal of the PA endothelium also abolished the relaxation response to SP. In contrast, SP-induced contraction was markedly inhibited by the cyclooxygenase inhibitor, meclofenamate (1 microgram/ml), as well as the SP antagonist, D-Pro2, D-Trp7,9-SP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Summary The functional morphology of the mammiliform penial glands ofLittorina saxatilis has been investigated with both light and electron microscopy. These penial glands line the ventral edge of the penis and orient with the female mantle during copulation. Secretions are released from the penial glands to this interface where they probably function in adhesion. The penial gland secretions comprise heterogeneous granules as well as apocrine and mucous secretions. The heterogeneous granules are produced in separate multicellular glands arranged in a series of lobes that lie outside a thick smooth muscle layer enclosing the lumen. Each glandular lobe is surrounded by a thin layer of smooth muscle. Secretions are transported in individual cellular processes that pass through the thick smooth muscle layer and empty into the lumen. Surrounding the lumen is an epithelium containing apocrine secretory cells as well as occasional goblet-type, mucous cells. The combined action of the muscles forces secretions out of the lumen through the penial papilla, onto the external surface of the mammiliform penial gland. Longitudinal muscles extend into the penial papilla enabling its protrusion or retraction. Retraction of the penial papilla following secretion release is thought to create negative pressure beneath the penial gland producing suction adhesion. The visco-elastic properties of the penial gland secretion are qualitatively different from foot mucus and may represent specialization to an adhesive function.  相似文献   

16.
Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269–319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment.  相似文献   

17.
Stimulation of bronchial C-fibers evokes a reflex increase in secretion by tracheal submucosal glands, but the influence of pulmonary C-fibers on tracheal gland secretion is uncertain. In anesthetized dogs with open chests, we sprayed powdered tantalum on the exposed mucosa of a segment of the upper trachea to measure the rate of secretion by submucosal glands. Secretions from the gland ducts caused elevations (hillocks) in the tantalum layer. We counted hillocks at 10-s intervals for 60 s before and 60 s after we injected capsaicin (10-20 micrograms/kg) into the right atrium to stimulate pulmonary C-fiber endings. Right atrial injection of capsaicin increased the rate of hillock formation fourfold, but left atrial injection had no significant effect. The response was abolished by cutting the vagus nerves or cooling them to 0 degree C. We conclude that the reflex increase in tracheal submucosal gland secretion evoked by right atrial injection of capsaicin was initiated as capsaicin passed through the pulmonary vascular bed, and hence that pulmonary C-fibers, like bronchial C-fibers, reflexly increase airway secretion.  相似文献   

18.
This paper was inspired by the reported results of authors from Uppsala and Lund that gastric glands in rats rhythmically contract 3-7 cycles per minute and develop luminal pressures more than 10 mmHg. To ensure that pepsinogen is not retained in the acid-rich section of the gland, ejection fractions would need to be more than 50% of the gland volume. We have tried to calculate the ejection fraction of such contractions. Dimensions of human gastric glands were measured on the fresh frozen samples of macroscopically and histologically normal gastric mucosa. In total, 18 specimens (from nine persons) were measured under the microscope. The density of glands was 135 +/- 11 (mean +/- S.D.) glands per mm( 2) of gastric mucosa. A typical gastric gland is a tubular structure 1.2 +/- 0.22 mm long and 0.03-0.05 mm wide. We have used 1 mm for length and 0.03 mm for the gland diameter to calculate that each gland approximates a volume of 707 pl, suggesting that the total glandular volume for 15 million glands reaches 10.6 ml. Further calculations based on one to five contractions per minute on an average and on the total volume of gastric glands of 10 ml showed that only ejection fractions less than 10% deliver daily volumes less than 3 l. The presented model of the gastric gland activity is based on the idea that the low ejection fractions require a reduction of the glandular dead space. The reduced luminal pressure during the gland relaxation might cause backflux of hydrophobic viscoelastic mucus through the gland aperture. Repeated glandular contractions and relaxations would move the mucus all the way to the gland bottom, filling the gland cavity below the neck with an axial semisolid mucous cylinder. This filling would reduce the gland dead space. During contractions, the gland would eject mainly the peripheral, the more liquid part of its content. The decreasing luminal pressure in the relaxing gland would pull the outlet mucus inside, protecting gland apertures from the gastric juice.  相似文献   

19.
Mucus glycoproteins (MGP) are high-molecular-weight glycoconjugates that are released from submucosal glands and epithelial goblet cells in the respiratory tract. Muscarinic receptors have an important role in the regulation of human nasal glandular secretion and mucus production, but it is not known which of the five muscarinic receptor subtypes are involved. The effect of nonselective and M1-, M2-, and M3-selective muscarinic antagonists on methacholine (MCh)-induced MGP secretion from human nasal mucosal explants was tested in vitro. MGP was assayed by enzyme-linked immunosorbent assay using a specific anti-MGP monoclonal antibody (7F10). MCh (100 microM) induced MGP secretion up to 127% compared with controls. MCh-induced MGP release was significantly inhibited by atropine (100 microM), the M, receptor antagonist pirenzepine (10-100 microM), and the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 1-100 microM). 4-DAMP significantly inhibited MCh-induced MGP release at a lower concentration (1 microM) than pirenzepine (10 microM). The M2 receptor antagonists AF-DX 116 and gallamine (both at 100 microM) had no effect. No antagonist alone had a significant effect on MGP release. These results indicate that the M1 and M3 muscarinic receptor subtypes regulate MGP secretion from human nasal mucosa and suggest that the M3 receptor has the predominant effect.  相似文献   

20.
Malfunction of airway submucosal glands contributes to the pathology of cystic fibrosis (CF), and cell cultures of CF human airway glands show defects in Cl(-) and water transport. Recently, a transgenic pig model of CF (the CF pig) has been developed. Accordingly, we have developed cell cultures of pig airway gland epithelium for use in investigating alterations in gland function in CF. Our cultures form tight junctions (as evidenced by high transepithelial electrical resistance) and show high levels of active anion secretion (measured as amiloride-insensitive short-circuit current). In agreement with recent results on human airway glands, neurohumoral agents that elevate intracellular Ca(2+) potently stimulated anion secretion, while elevation of cAMP was comparatively ineffective. Our cultures express lactoferrin and lysozyme (serous gland cell markers) and MUC5B (the main mucin of airway glands). They are, therefore, potentially useful in determining if CF-related alterations in anion transport result in altered secretion of serous cell antimicrobial agents or mucus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号