首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamines in mycoplasmas and in mycoplasma-infected tumour cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Three out of four different mycoplasma strains analysed for the polyamine contents contained relatively high concentrations of putrescine, cadaverine, spermidine and spermine. In addition to ornithine decarboxylase (EC 4.1.1.17) activity, the mycoplasmas also exhibited comparable or higher lysine decarboxylase (EC 4.1.1.18) activity fully resistant to the action of 2-difluoromethylornithine, an irreversible inhibitor of eukaryotic ornithine decarboxylase. 2-Difluoromethylornithine did not modify the polyamine pattern of actively growing mycoplasmas. Ehrlich ascites carcinoma cells and L1210 mouse leukemia cells infected with any of the four mycoplasma strains contained, in addition to putrescine, spermidine and spermine, and also easily measurable concentrations of cadaverine; the latter diamine was absent in uninfected cultures. When the infected cells were exposed to difluoromethylornithine, the accumulation of cadaverine was markedly enhanced. The modification of cellular polyamine pattern by mycoplasmas, especially in the presence of inhibitors of eukaryotic ornithine decarboxylase, could conceivably be used as an indicator of mycoplasma infection in cultured animal cells.  相似文献   

2.
1. Ehrlich ascites-carcinoma cells contained relatively high concentrations of spermidine and spermine, but the putrescine content of the washed cells was less than 10% of that of higher polyamines. 2. Ascites-tumour cells likewise exhibited high activities of L-ornithine decarboxylase (EC 4.1.1.17), S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (EC 2.5.1.16) and spermine synthase. 3. During the first days after the inoculation, the polyamine pattern of the ascites cells was characterized by a high molar ratio of spermidine to spermine, which markedly decreased on aging of the cells. 4. Various diamines injected into mice bearing ascites cells rapidly and powerfully decreased ornithine decarboxylase activity in the carcinoma cells, apparently through a mechanism that was not a direct inhibition of the enzyme in vitro. Cadaverine (1,5-diaminopentane) and 1,6-diaminohexane were the most potent inhibitors of ornithine decarboxylase among the amines tested. 5. Chronic treatment of the mice with diamines resulted in a virtually complete disappearance of ornithine decarboxylase activity, and after 24h a significant decline in spermidine accumulation. 6. Cadaverine appeared to be an especially suitable compound for use as an inhibitor of the synthesis of higher polyamines, at least in Ehrlich ascites cells, since this diamine also acted as a competitive inhibitor for putrescine in the spermidine synthase reaction without being incorporated into the higher polyamines.  相似文献   

3.
Ornithine decarboxylase (ODC; EC 4.1.1.17), transglutaminase (EC 2.3.2.13), diamine oxidase (DAO; EC 1.4.3.6) and total di- and poly-amines were studied in rat liver and kidney cortex throughout pregnancy. In liver, ODC activity exhibited two major peaks (4.5-5 times the control activities) on days 15 and 17. Also putrescine and spermidine increased biphasically (3-4-fold), but no variation in spermine content was observed. Transglutaminase activity showed slight variations only near the end of gestation. In kidney, ODC activity did not fluctuate significantly during pregnancy, whereas both transglutaminase activity and putrescine content showed three major increases, in very early, middle and late pregnancy. No significant variations in spermidine and spermine were observed. In both organs, DAO activity, very low or undetectable until day 10, dramatically increased (10- and 20-fold in kidney and liver respectively) in the second half of pregnancy, reaching maxima on days 16-17 and 19. The results obtained for transglutaminase, ODC and total di- and poly-amines are interpreted on the basis of hyperplastic and hypertrophic events in the liver and kidney respectively. The behaviour of DAO suggests that the enzyme plays an important role in the control of intracellular diamine concentration.  相似文献   

4.
Catabolism of polyamines   总被引:10,自引:0,他引:10  
Seiler N 《Amino acids》2004,26(3):217-233
Summary. Owing to the establishment of cells and transgenic animals which either lack or over-express acetylCoA:spermidine N1-acetyltransferase a major progress was made in our understanding of the role of polyamine acetylation. Cloning of polyamine oxidases of mammalian cell origin revealed the existence of several enzymes with different substrate and molecular properties. One appears to be identical with the polyamine oxidase that was postulated to catalyse the conversion of spermidine to putrescine within the interconversion cycle. The other oxidases are presumably spermine oxidases, because they prefer free spermine to its acetyl derivatives as substrate. Transgenic mice and cells which lack spermine synthase revealed that spermine is not of vital importance for the mammalian organism, but its transformation into spermidine is a vitally important reaction, since in the absence of active polyamine oxidase, spermine accumulates in blood and causes lethal toxic effects.Numerous metabolites of putrescine, spermidine and spermine, which are presumably the result of diamine oxidase-catalysed oxidative deaminations, are known as normal constituents of organs of vertebrates and of urine. Reasons for the apparent contradiction that spermine is in vitro a poor substrate of diamine oxidase, but is readily transformed into N8-(2-carboxyethyl)spermidine in vivo, will need clarification.Several attempts were made to establish diamine oxidase as a regulatory enzyme of polyamine metabolism. However, diamine oxidase has a slow turnover. This, together with the efficacy of the homeostatic regulation of the polyamines via the interconversion reactions and by transport pathways renders a role of diamine oxidase in the regulation of polyamine concentrations unlikely. 4-Aminobutyric acid, the product of putrescine catabolism has been reported to have antiproliferative properties. Since ornithine decarboxylase and diamine oxidase activities are frequently elevated in tumours, it may be hypothesised that diamine oxidase converts excessive putrescine into 4-aminobutyric acid and thus restricts tumour growth and prevents malignant transformation. This function of diamine oxidase is to be considered as part of a general defence function, of which the prevention of histamine and cadaverine accumulation from the gastrointestinal tract is a well-known aspect.  相似文献   

5.
Polyamine levels and activities of enzymes of polyamine biosynthesis and catabolism were examined in the barley cultivar Delibes (Ml1al + Ml(Ab)) reacting hypersensitively to the powdery mildew fungus, Blumeria graminis f. sp. hordei (race CC220). Levels of free putrescine and spermine and of conjugated forms of putrescine, spermidine and spermine were greatly increased 1–4 d following inoculation of barley with the powdery mildew. These changes in polyamine levels were accompanied by elevated activities of the polyamine biosynthetic enzymes ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and S‐adenosylmethionine decarboxylase (AdoMetDC) and the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO). Activities of two enzymes involved in conjugating polyamines to hydroxycinnamic acids, putrescine hydroxycinnamoyl transferase (PHT) and tyramine feruloyl‐CoA transferase (TFT) were also examined and were found to increase significantly 1–4 d after inoculation. The possibility that the increased levels of free spermine, increased polyamine conjugates, and increased DAO and PAO activities are involved in development of the hypersensitive response of Delibes to powdery mildew infection is discussed.  相似文献   

6.
Summary The uncommon polyamines, norspermidine and norspermine, were detected in maizein vitro cultures of three different genotypes. The common polyamines, spermidine and spermine, along with the diamine, putrescine, were also observed. The total amounts of the uncommon polyamines, norspermidine and norspermine, were comparable to the total amounts of the common polyamines, spermidine and spermine, in the maize tissues. The titer for norspermidine was 6- to 15-fold greater than that of its common counterpart (spermidine) in the three genotypes. Norspermidine was the predominant polyamine among all triamines and tetramines detected in cell cultures of two of the three genotypes of maize examined and was predominant along with spermine in the third genotype. Enzyme assays performed with extracts from callus of one of the genotypes suggested a likely mechanism to account for the biosynthesis of the uncommon polyamines in cultured maize cells, through the actions of putrescine aminopropyltransferase, polyamine oxidase, and Schiff-base reductase/decarboxylase enzyme activities. This is the first report of the detection of uncommon polyamines in maize tissues, as well as the first report of these uncommon polyamines in a monocotyledonous plant.  相似文献   

7.
The activities of catalase, polyamine oxidase, diamine oxidase, ornithine decarboxylase, and peroxisomal β-oxidation were assayed in homogenates from liver and small intestinal mucosa of rats which had been fed either a diet very low in polyamines or a diet containing five times the levels of dietary polyamines (putrescine, spermine, and spermidine) found in a standard rat diet. In rats fed the high polyamine diet, hepatic activities of catalase and polyamine oxidase were significantly decreased. Levels of the other activities were unchanged, except that intestinal ornithine decarboxylase was decreased. In rats treated simultaneously with clofibrate, the high polyamine diet restored activities of catalase, ornithine decarboxylase, and polyamine oxidase back to levels found in rats fed the low polyamine diet. The expected increase in activity of peroxisomal β-oxidation was observed, although this was somewhat diminished in rats fed the high polyamine diet. Intestinal diamine oxidase activity was stimulated by clofibrate, particularly in rats fed the high polyamine diet. For the duration of the experiment (20 days), levels of putrescine, spermine, and spermidine in blood remained remarkably constant irrespective of treatment, suggesting that polyamine homeostasis is essentially independent of dietary supply of polyamines. It is suggested that intestinal absorption/metabolism of polyamines is of significance in this respect. Treatment with clofibrate appeared to alter polyamine homeostasis.  相似文献   

8.
Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine, and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, andVigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.  相似文献   

9.
DFMO reduced mycelial growth of the ectomycorrhizal fungus Paxillus involutus . This was accompanied by reduced activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and diamine oxidase, and unchanged polyamine oxidase activity. Although DFMO treatment did not alter putrescine or spermidine concentrations significantly, spermine concentration was substantially reduced.  相似文献   

10.
The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration.  相似文献   

11.
The activity of L-arginine decarboxylase (ADC: EC 4.1.1.19)and polyamine content were examine in intact wheat plants ( Triticum aestivum L. cv. Sappo) exposed to osmotic stress (0.4 M mannitol) for 5 days. ADC activity was increased in first and second leaves and in roots of mannitol-stressed plants. Concentrations of putrescine, cadaverine and spermine were generally increased in leaves and roots of plants exposed to mannitol, whereas spermidine was reduced in first leaves and roots of these plants. In an attempt to determine the localization of mannitol in stressed wheat. 14C-mannitol was fed to plants grown in liquid culture. Most of the mannitol was detected in roots (84%), while small amounts were found in first (9%) and second (7%) leves.
Since it seemed possible that some of the effects on polyamine metabolism caused by exposure to mannitol could have been the result of water stress. polyamine metabolism was also studied in plants water stressed by exposure to 2% polyethylene glycol (PEG) 4000. ADC activity was not altered by exposure to PEG. but concentrations of putrescine, spermidine and spermine were generally reduced in leaves and roots of stressed plants. Cadaverine concentrations were not significantly affected by exposure to PEG. Spermidine and spermine concentrations were reduced in first and second leaves but remained unchanged in roots of plants exposed to PEG.  相似文献   

12.
13.
Manganese (Mn) is one of the essential microelements in all organisms. However, high level of Mn is deleterious to plants. In this study, the effects of exogenous manganese application on mineral element, polyamine (PA) and antioxidant accumulation, as well as polyamine metabolic and antioxidant enzyme activities, were investigated in Malus robusta Rehd., a widely grown apple rootstock. High level of Mn treatments decreased endogenous Mg, Na, K and Ca contents, but increased Zn content, in a Mn-concentration-dependent manner. Polyamine metabolic assays revealed that, except the content of perchloric acid insoluble bound (PIS-bound) spermine, which increased significantly, the contents of putrescine (Put), spermidine (Spd) and spermine (Spm) all decreased progressively, accompanied with the decreased activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17), and the increased activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.5.3.3). Further antioxidant capacity analyses demonstrated that contents of anthocyanin, non-protein thiols (NPT) and soluble sugar, and the activities of guaiacol peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1), also increased upon different concentrations of Mn treatments. Our results suggest that endogenous ion homeostasis is affected by high level of Mn application, and polyamine and antioxidant metabolism is involved in the responses of M. robusta Rehd. plants to high level of Mn stress.  相似文献   

14.
Summary. Ornithine decarboxylase (ODC) and diamine oxidase (DAO) are important enzymes involved in the metabolism of polyamines (putrescine, spermidine and spermine). The influence of testosterone (T) and 17, β– estradiol (E2) on the activity of ODC and DAO was examined in cultivated normal rat kidney (NRK) epithelial cells. The results showed an increase in enzyme activities 4 hours or 12 hours after hormonal treatment. Both T and E2 led to a significant increase (1.6-fold) in ODC protein level as compared to the controls. Cellular concentration of spermidine and spermine increased (2.2- and 2.6-fold respectively) 4 hours after T addition. A higher levels in concentrations of putrescine (1.4-fold) and spermine (1.5-fold) 12 hours after E2 treatment were observed. These results suggest that the biosynthesis and terminal oxidation of the polyamines in NRK epithelial cells are androgen- and estrogen-mediated and depend on the hormonal sensitivity of the cells. Received April 5, 1999, Accepted December 20, 1999  相似文献   

15.
R. Federico  R. Angelini 《Planta》1988,173(3):317-321
Diamine-oxidase (DAO; EC 1.4.3.6) activity and di-and polyamine levels were estimated along the epicotyl and root of light-grown and etiolated lentil (Lens culinaris Medicus) and pea (Pisum sativum L.) seedlings. The activity of DAO was higher in etiolated epicotyls than in lightgrown ones. In both species there was a positive correlation between DAO activity and the diamine (putrescine and cadaverine) levels along the whole epicotyl and root. Polyamine (spermine and spermidine) distribution seemed to be associated with the meristematic and elongating zone of the epicotyl and root. The physiological function of DAO is discussed in relation to its possible role in providing hydrogen peroxide to peroxidase-dependent reactions occurring in the cell wall.Abbreviations CAD cadaverine - DA diamine - DAO diamine oxidase - PA polyamine - PUT putrescine - SPD spermidine - SPM spermine  相似文献   

16.
17.
When exposed to hypotonic growth medium, Ehrlich ascites carcinoma cells showed a rapid stimulation of ornithine decarboxylase (EC 4.1.1.17) activity in 4 h, followed by a rise in their putrescine content. This effect was totally abolished by addition of a slightly hypertonic concentration of sodium chloride or sucrose to the medium. The general protein synthesis was unaffected by the hypotonic treatment. The uptake of putrescine and, to a lesser extent, spermidine was enhanced, and the conversion of the radioactive putrescine into spermidine appeared partially inhibited during later stages of the hypotonic treatment. As a result, the half-life of putrescine increased from 2.8 h under isoosmotic conditions to 7.3 h in hypoosmotic medium. Both exogenous ([14C]-putrescine-derived) and endogenous ([14C]ornithine-derived) putrescine degraded at similar rates in control and hypotonic cells, yet the putrescine taken from the medium degraded preferably to nonpolyamine products, while the putrescine synthesized in the cell was converted evenly to spermidine and to other metabolites. Adenosylmethionine decarboxylase activity (EC 4.1.1.50), which provides the second precursor for spermidine and spermine synthesis, was distinctly inhibited in the hypotonic medium. Inhibition was likewise observed in spermidine synthase activity, while spermine synthase was marginally stimulated. It appears that the hypotonic treatment serves a special condition under which not only the formation of putrescine is enhanced dramatically but the cells also attempt to conserve the diamine by preventing its further metabolism to higher polyamines.  相似文献   

18.
19.
The leaves of four reed ecotypes (Phragmites communis Trinius) growing in the desert regions of northwest China were investigated for levels of polyamines and activity of arginine decarboxylase (ADC; EC 4.1.1.19) during the growing season of 5 months. The polyamines in the leaves of all reed ecotypes consisted of putrescine, spermidine and spermine. The polyamine levels of the leaves were lower in the swamp reed than in the terrestrial reed ecotypes. Leaf polyamine levels decreased in all ecotypes over the course of the season. Compared to the swamp reed, the terrestrial reed ecotypes maintained higher ADC activity and a predominance of spermine, resulting in a lower ratio of putrescine to spermidine and spermine. It seems that the adaptation of reed plants to drought and saline habitats may be correlated with putrescine synthesis via the ADC pathway, and with a successful conversion of putrescine to spermidine and spermine.  相似文献   

20.
The polyamines putrescine, spermidine, and spermine and their biosynthetic enzymes arginine decarboxylase, ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase are present in all parts of dormant potato (Solanum tuberosum L.) tubers. They are equally distributed among the buds of apical and lateral regions and in nonbud tissues. However, the breaking of dormancy and initiation of sprouting in the apical bud region are accompanied by a rapid increase in ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase activities, as well as by higher levels of putrescine, spermidine, and spermine in the apical buds. In contrast, the polyamine biosynthetic enzyme activities and titer remain practically unchanged in the dormant lateral buds and in the nonbud tissues. The rapid rise in ornithine decarboxylase, but not arginine decarboxylase activity, with initiation of sprouting suggests that ornithine decarboxylase is the rate-limiting enzyme in polyamine biosynthesis. The low level of polyamine synthesis during dormancy and its dramatic increase in buds in the apical region at break of dormancy suggest that polyamine synthesis is linked to sprouting, perhaps causally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号