首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacteria (83 strains and seven natural populations) were screened for content of apoptosis (cell death)-inducing activity towards neoplastic cells of the immune (jurkat acute T-cell lymphoma) and hematopoetic (acute myelogenic leukemia) lineage. Apoptogenic activity was frequent, even in strains cultured for decades, and was unrelated to whether the cyanobacteria had been collected from polar, temperate, or tropic environments. The activity was more abundant in the genera Anabaena and Microcystis compared to Nostoc, Phormidium, Planktothrix, and Pseudanabaena. Whereas the T-cell lymphoma apoptogens were frequent in organic extracts, the cell death-inducing activity towards leukemia cells resided mainly in aqueous extracts. The cyanobacteria were from a culture collection established for public health purposes to detect toxic cyanobacterial blooms, and 54 of them were tested for toxicity by the mouse bioassay. We found no correlation between the apoptogenic activity in the cyanobacterial isolates with their content of microcystin, nor with their ability to elicit a positive standard mouse bioassay. Several strains produced more than one apoptogen, differing in biophysical or biological activity. In fact, two strains contained microcystin in addition to one apoptogen specific for the AML cells, and one apoptogen specific for the T-cell lymphoma. This study shows the potential of cyanobacterial culture collections as libraries for bioactive compounds, since strains kept in cultures for decades produced apoptogens unrelated to the mouse bioassay detectable bloom-associated toxins.  相似文献   

2.
Summary Snails and nematodes, the potential cyanobacterial grazers, differ in their choice for cyanobacterial diet. Snails prefer non-mucilaginous forms while nematodes prefer mucilaginous forms. Such differences in feeding choice between the cyanobacteria suggests that it may not be possible to select strains of diazotrophic cyanobacteria that are resistant to all grazers. The potential consumption of cyanobacteria at an average field density of 20,000 snails ha−1 was estimated to be about 50 kg (fresh weight) ha−1 day−1. Dorylamus sp. was most dominant nematode associated with cyanobacterial consumption. Phytoextracts of neem (Azadirachta indica), bel (Aegle marmelos) and tobacco (Nicotiana tabacum) were effective in controlling these cyanobacterial grazers. The minimum concentration of neem, bel and tobacco phytoextract in water for 100 % mortality of snails were 0.1, 2.0 and 0.05%, respectively. However, trepellent level was only 0.01% for neem and tobacco phytoextract. Complete mortality of nematode (Dorylamus spp.) required a higher concentration level (2%) even in the most effective tobacco phytoextract. Lower levels of phytoextract (0.1%) were found to stimulate growth and nitrogen fixation of cyanobacteria. Application of these plant biomasses resulted in significant increase in cyanobacterial acetylene-reducing activity (ARA) and rice yield and a significant decrease in snail and nematode population. Augmentation of cyanobacterial acetylene-reducing activity was two to three times higher in comparison to the control in both the years of experimentation. Rice yield also increased between 3.8 and 58.5% over the control, depending on the quantity and nature of plant biomass. Tobacco waste was significantly superior in comparison to neem and bel biomass as carrier of cyanobacterial culture.  相似文献   

3.
A novel protein showing strong antiviral activities against cucumber mosaic virus (CMV) and tomato mosaic virus (TMV) was purified from the coelomic fluid of the earthworm Eisenia foetida. The protein was characterized as a cold-adapted serine protease. Its molecular weight was estimated to be 27,000 by SDS-PAGE. The enzyme was most active at pH 9.5 and 40–50 °C. The protease activity at 4 °C was 60% of that obtained at the optimal temperature. The activity was suppressed by various serine protease inhibitors. Partial N-terminal amino acid sequence of the enzyme showed homology with serine proteases of earthworms, E. foetida and Lumbricus rubellus previously studied. Our results suggest that the enzyme can be applicable as a potential antiviral factor against CMV, TMV, and other plant viruses.  相似文献   

4.
This study presents a phenol and lysozyme free protocol for genomic DNA isolation of cyanobacteria from culture, mats and soil. For an efficient and pure DNA isolation from cyanobacteria having tough cell wall, extra steps of glass beading and Sepharose 4B purification were added. The modified method gave a higher yield of DNA than the phenol: chloroform extraction method. Four parameters selected for purity testing of the isolated DNA were: (i) restriction digestion with Hind III, (ii) randomly amplified polymorphic DNA-PCR of axenic culture of cyanobacteria to assess phylogenetic relatedness, (iii) denaturing gradient gel electrophoretic (DGGE) analysis of cyanobacterial mat and soil to ascertain the applicability of the isolated DNA for community analysis, and (iv) sequencing of partial 16S rDNA of Hapalosiphon intricatus BHULCR1, Anabaena doliolum LCR1, Anabaena oryzae LCR2, Aulosira fertilissima LCR4, and Tolypothrix tenuis LCR7 and BLAST analysis to confirm their cyanobacterial identity. Data generated from above analyses lead us to conclude that the modified method in question is rapid, cost effective, health and time conscious and promising for genetic fingerprinting and community analysis of cyanobacteria from diverse habitats.  相似文献   

5.
This study aims to check if the protein content of a cyanobacterial culture is a reliable biomass parameter for cyanobacteria in laboratory experiments, and therefore can be proposed as a standard biomass parameter in culture work to facilitate comparison of results from different studies. For this purpose, the cyanobacteria Microcystis aeruginosa PCC 7806 and Planktothrix agardhii PT2 were grown in 10-L batch cultures with O2 medium and under iron-, nitrate- or phosphate-limited conditions. A linear correlation was found between protein and biovolume in all cultures during exponential growth. We conclude that protein is a suitable biomass parameter for cyanobacteria in laboratory experiments during balanced growth.  相似文献   

6.
Two strains of Myxococcus xanthus, and a strain of Myxococcus fulvus were compared with respect to their ability to entrap and lyse trichomes of the cyanobacterium Phormidium luridum var. olivaceae. All of these isolates form colonial aggregates and spherules in either axenic culture with a tryptone-salts medium or in a mixed culture with viable cyanobacterial cells as the sole source of nutrients. Light microscopy showed evidence of swarming activity on the surface of all three myxococci with the accompanying formation of fruiting structures. Extended incubation of mixed cultures showed the myxococci to be capable of long-term control of the cyanobacterial population with predator-prey population cycling occurring on average every 9 days. Serial transfer of mixed cultures into either fresh autotrophic medium or cyanobacterial cultures of 107 per ml showed the persistence of predatory activity. Myxococcal densities were shown to return repeatedly to initial virulent levels. Predator inoculum levels could be reduced to 50 cells per 100 ml in a cyanobacterial culture of 107 per ml. These in vitro data enhance the potential of the myxococcus predatory colony as a biological control agent for in situ cyanobacteria.  相似文献   

7.
The occurrence of toxic cyanobacterial blooms is a serious problem for fast‐developing countries in Africa, such as Ethiopia, that are struggling with significant degradation of the natural environment and limited access to water of good quality. Research undertaken on Lake Tana in Ethiopia between 2009 and 2011 was intended to assess the seasonal threat from cyanobacteria and to select methods for tracking of this threat in the future. The cyanobacterial genus Microcystis was found to be present throughout the monitoring period, and M. aeruginosa was determined as the dominant species. Moreover, in all samples, toxigenic cyanobacteria with the potential to produce microcystins were detected. High levels of microcystins, ranging from 0.58 to 2.65 μg L?1, were detected each November, which indicates that in the postrainy season, water usage should be limited. The correlation between concentrations of chlorophyll‐a and microcystins suggested that chlorophyll‐a could be used as an indicator of the potential presence of cyanobacterial‐derived hepatotoxins in Lake Tana in the future. Furthermore, for quick quantitative confirmation of the presence of microcystins, a simple and rapid ELISA test was recommended.  相似文献   

8.
Cyanobacteria are a rich source of vast array of bioactive molecules including toxins with wide pharmaceutical importance. They show varied bioactivities like antitumor, antiviral, antibacterial, antifungal, antimalarial, antimycotics, antiproliferative, cytotoxicity, immunosuppressive agents and multi-drug resistance reversers. A number of techniques are now developed and standardized for the extraction, isolation, detection and purification of cyanobacterial bioactive molecules. Some of the compounds are showing interesting results and have successfully reached to phase II and phase III of clinical trials. These compounds also serve as lead compounds for the development of synthetic analogues with improved bioactivity. Cyanobacterial bioactive molecules hold a bright and promising future in scientific research and great opportunity for drug discovery. This review mainly focuses on anticancerous, antiviral and antibacterial compounds from cyanobacteria; their clinical status; extraction and detection techniques.  相似文献   

9.
Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria.  相似文献   

10.
Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.  相似文献   

11.
BackgroundThe rapid spread of novel coronavirus called SARS-CoV-2 or nCoV has caused countries all over the world to impose lockdowns and undertake stringent preventive measures. This new positive-sense single-stranded RNA strain of coronavirus spreads through droplets of saliva and nasal discharge.PurposeUS FDA has authorized the emergency use of Remdesivir looking at the increasing number of cases of COVID-19, however there is still no drug approved to treat COVID-19. An alternative way of treatment could be the use of naturally derived molecules with known antiviral properties.MethodWe reviewed the antiviral activities of two polyphenols derived from tea, epigallocatechin-3-gallate (EGCG) from green tea and theaflavins from black tea. Both green tea and black tea polyphenols have been reported to exhibit antiviral activities against various viruses, especially positive-sense single-stranded RNA viruses.ResultsRecent studies have revealed the possible binding sites present on SARS-CoV-2 and studied their interactions with tea polyphenols. EGCG and theaflavins, especially theaflavin-3,3′-digallate (TF3) have shown a significant interaction with the receptors under consideration in this review. Some docking studies further emphasize on the activity of these polyphenols against COVID-19.ConclusionThis review summarizes the available reports and evidences which support the use of tea polyphenols as potential candidates in prophylaxis and treatment of COVID-19.  相似文献   

12.
The cyanobacteria are photosynthetic prokaryotes of significant ecological and biotechnological interest, since they strongly contribute to primary production and are a rich source of bioactive compounds. In eutrophic fresh and brackish waters, their mass occurrences (water blooms) are often toxic and constitute a high potential risk for human health. Therefore, rapid and reliable identification of cyanobacterial species in complex environmental samples is important. Here we describe the development and validation of a microarray for the identification of cyanobacteria in aquatic environments. Our approach is based on the use of a ligation detection reaction coupled to a universal array. Probes were designed for detecting 19 cyanobacterial groups including Anabaena/Aphanizomenon, Calothrix, Cylindrospermopsis, Cylindrospermum, Gloeothece, halotolerants, Leptolyngbya, Palau Lyngbya, Microcystis, Nodularia, Nostoc, Planktothrix, Antarctic Phormidium, Prochlorococcus, Spirulina, Synechococcus, Synechocystis, Trichodesmium, and Woronichinia. These groups were identified based on an alignment of over 300 cyanobacterial 16S rRNA sequences. For validation of the microarrays, 95 samples (24 axenic strains from culture collections, 27 isolated strains, and 44 cloned fragments recovered from environmental samples) were tested. The results demonstrated a high discriminative power and sensitivity to 1 fmol of the PCR-amplified 16S rRNA gene. Accurate identification of target strains was also achieved with unbalanced mixes of PCR amplicons from different cyanobacteria and an environmental sample. Our universal array method shows great potential for rapid and reliable identification of cyanobacteria. It can be easily adapted to future development and could thus be applied both in research and environmental monitoring.  相似文献   

13.
ABSTRACT

Cyanobacteria (blue-green algae) are photosynthetic prokaryotes used as food by humans. They have also been recognized as an excellent source of vitamins and proteins and as such are found in health food stores throughout the world. They are also reported to be a source of fine chemicals, renewable fuel and bioactive compounds. This potential is being realized as data from research in the areas of the physiology and chemistry of these organisms are gathered and the knowledge of cyanobacterial genetics and genetic engineering increased. Their role as antiviral, anti-tumour, antibacterial, anti-HIV and a food additive have been well established. The production of cyanobacteria in artificial and natural environments has been fully exploited. In this review the use of cyanobacteria and microalgae, production processes and biosynthesis of pigments, colorants and certain bioactive compounds are discussed in detail. The genetic manipulation of cyanobacteria and microalgae to improve their quality are also described at length.  相似文献   

14.
Five cyanobacterial strains, Anabaena sp. Ck1, Oscillatoria sp. Ck2, Phormidium sp. Ck3, Chroococcidiopsis sp. Ck4, and Synechosystis sp. Ck5 were selected for their positive cytokinins-like activity using cucumber cotyledon bioassay and GUS assay in Arabidopsis ARR5::GUS. Classical cucumber cotyledon bioassay was modified for direct screening of cyanobacteria avoiding need for extraction and purification. Cytokinins from cyanobacteria were absorbed onto filter paper which was then assayed for cytokinins-like activity. A rapid chromatographic method was developed for the simultaneous determination of cytokinins and indole-3-acetic acid (IAA). Cyanobacterial biomass (50–100 mg) and cell-free culture filtrate were extracted in Bieleski buffer and purified by solid-phase extraction. The extract was used to determine phytohormones by ultra performance liquid chromatography and electrospray ionization-tandem mass spectrometry in positive and negative modes, respectively, with multiple reactions monitoring. Stable isotope-labeled cytokinins and IAA standards were added in the samples to follow recovery of the compounds and method validation. Five cytokinins determined in the selected strains were Zeatin (cis and trans isomers), Zeatin riboside, Dihydrozeatin riboside, and zeatin-o-glucoside. The strains were shown to accumulate as well as release the phytohormones.  相似文献   

15.
Allelopathic activity of Chara aspera   总被引:5,自引:2,他引:3  
Allelopathic activity of Chara aspera was determined in agar diffusion assays using planktonic cyanobacteria as target organisms. Growth inhibition of cyanobacterial strains was observed in bioassays inoculated with living Chara aspera shoots as well as with 60% aqueous methanol extracts of Chara aspera. For further analysis, the methanol extract was fractionated into three parts: a lipophilic methanol – a butylmethylether-extract and a hydrophilic methanol extract. The bioassays indicated that major allelopathic activity was retained in the hydrophilic methanol – and the lipophilic butylmethylether-extract. Separation of the extracts by means of high performance liquid chromatography followed by fractionation of the eluant resulted in supplementary nine fractions, three from each part, respectively. Three fractions exhibited a strong growth inhibition of the target organism Anabaena cylindrica Lemmermann. The second and the third fraction of the lipophilic butylmethylether extract indicate the presence of novel allelopathic active compounds with lipophilic characteristics. The results lead to the suggestion that more than two chemical compounds in Chara aspera are responsible for the growth inhibition of cyanobacteria.  相似文献   

16.
Cyanobactins are small cyclic peptides that are produced by a diverse selection of cyanobacteria living in symbioses as well as terrestrial, marine, or freshwater environments. They include compounds with antimalarial, antitumor, and multidrug reversing activities and potential as pharmaceutical leads. Cyanobactins are produced through the proteolytic cleavage and cyclization of precursor peptides coupled with further posttranslational modifications such as heterocyclization, oxidation, or prenylation of amino acids. Cyanobactin gene clusters encode two proteases which cleave and cyclisize the precursor peptide as well as proteins participating in posttranslational modifications. The bioinformatic mining of cyanobacterial genomes has led to the discovery of novel cyanobactins. Heterologous expression of these gene clusters provided insights into the role of the genes participating in the biosynthesis of cyanobactins and facilitated the rational design of novel peptides. Enzymes participating in the biosynthesis of cyanobactins may prove useful as catalysts for producing novel cyclic peptides in the future. The recent discovery of the cyanobactin biosynthetic pathway in cyanobacteria extends our knowledge of their potential as producers of interesting metabolites.  相似文献   

17.
Microcystins (MC), the most prevalent group of harmful cyanobacterial hepatotoxins, are primarily produced by strains of cyanobacteria in Microcystis, Anabaena and Planktothrix. Lake Taihu, which is the third largest freshwater lake in China, is a hypertrophic shallow lake in eastern China that has experienced lake-wide cyanobacterial blooms annually during the last few decades. In this study, PCR-DGGE was used to evaluate the diversity of potential MC-producing cyanobacteria and real-time PCR was used to analyze the dynamics of this population based on the presence of the mcy gene in samples collected during a year long study. The results revealed that all MC-producing genotypes detected belonged to the genus Microcystis. In addition, the MC-producing genotype communities were more diverse during the bloom season than the non-bloom season, and the diversity in the late bloom period was lower than the diversity in the early bloom period. Furthermore, the abundance of MC-producing genotypes increased dramatically during the bloom development period, reaching its peak in late summer (September). The results also suggested that the highest mcy gene concentration lagged behind the highest MC concentration, and the potential MC-producing cyanobacterial community shift lagged behind the development of blooms.  相似文献   

18.
The cyanobacteria are photosynthetic prokaryotes of significant ecological and biotechnological interest, since they strongly contribute to primary production and are a rich source of bioactive compounds. In eutrophic fresh and brackish waters, their mass occurrences (water blooms) are often toxic and constitute a high potential risk for human health. Therefore, rapid and reliable identification of cyanobacterial species in complex environmental samples is important. Here we describe the development and validation of a microarray for the identification of cyanobacteria in aquatic environments. Our approach is based on the use of a ligation detection reaction coupled to a universal array. Probes were designed for detecting 19 cyanobacterial groups including Anabaena/Aphanizomenon, Calothrix, Cylindrospermopsis, Cylindrospermum, Gloeothece, halotolerants, Leptolyngbya, Palau Lyngbya, Microcystis, Nodularia, Nostoc, Planktothrix, Antarctic Phormidium, Prochlorococcus, Spirulina, Synechococcus, Synechocystis, Trichodesmium, and Woronichinia. These groups were identified based on an alignment of over 300 cyanobacterial 16S rRNA sequences. For validation of the microarrays, 95 samples (24 axenic strains from culture collections, 27 isolated strains, and 44 cloned fragments recovered from environmental samples) were tested. The results demonstrated a high discriminative power and sensitivity to 1 fmol of the PCR-amplified 16S rRNA gene. Accurate identification of target strains was also achieved with unbalanced mixes of PCR amplicons from different cyanobacteria and an environmental sample. Our universal array method shows great potential for rapid and reliable identification of cyanobacteria. It can be easily adapted to future development and could thus be applied both in research and environmental monitoring.  相似文献   

19.
20.
Cyanobacterial biofertilizers in rice agriculture   总被引:1,自引:0,他引:1  
Floodwater and the surface of soil provide the sites for aerobic phototrophic nitrogen (N) fixation by free-living cyanobacteria and theAzolla-Anabaena symbiotic N2-fixing complex. Free-living cyanobacteria, the majority of which are heterocystous and nitrogen fixing, contribute an average of 20–30 kg N ha-1, whereas the value is up to 600 kg ha-1 for theAzollaAnabaena system (the most beneficial cyanobacterial symbiosis from an agronomic point of view). Synthesis and excretion of organic/growth-promoting substances by the cyanobacteria are also on record. During the last two or three decades a large number of studies have been published on the various important fundamental and applied aspects of both kinds of cyanobacterial biofertilizers (the free-living cyanobacteria and the cyanobacteriumAnabaena azollae in symbiotic association with the water fernAzolla), which include strain identification, isolation, purification, and culture; laboratory analyses of their N2-fixing activity and related physiology, biochemistry, and energetics; and identification of the structure and regulation of nitrogenfixing (nif) genes and nitrogenase enzyme. The symbiotic biology of theAzolla-Anabaena mutualistic N2-fixing complex has been clarified. In free-living cyanobacterial strains, improvement through mutagenesis with respect to constitutive N2 fixation and resistance to the noncongenial agronomic factors has been achieved. By preliminary meristem mutagenesis inAzolla, reduced phosphate dependence was achieved, as were temperature tolerance and significant sporulation/spore germination under controlled conditions. Mass-production biofertilizer technology of free-living and symbiotic (Azolla-Anabaena) cyanobacteria was studied, as were the interacting and agronomic effects of both kinds of cyanobacterial biofertilizer with rice, improving the economics of rice cultivation with the cyanobacterial biofertilizers. Recent results indicate a strong potential for cyanobacterial biofertilizer technology in rice-growing countries, which opens up a vast area of more concerted basic, applied, and extension work in the future to make these self-renewable natural nitrogen resources even more promising at the field level in order to help reduce the requirement for inorganic N to the bare minimum, if not to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号