首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The aim of this work was to examine the correspondence between apoplastic/symplastic antioxidant status and previously reported plant age-related shifts in the ozone (O3) resistance of Plantago major L. Seed-grown plants were fumigated in duplicate controlled environment chambers with charcoal/Purafil®-filtered air (CFA) or CFA plus 70 nmol mol−1 O3 for 7 h d−1 over a 42 d period. Measurements of stomatal conductance and antioxidants were made after 14, 28 and 42 d fumigation, on leaves at an equivalent stage of development (youngest fully expanded leaf, measured c . 9 d after emergence). Ozone exposure resulted in a similar decline in stomatal conductance across plant ages, indicating that increases in O3 resistance with plant age were mediated through changes in the tolerance of leaf tissue rather than enhanced pollutant exclusion. Leaf apoplastic washing fluid was found to contain 'unspecific' peroxidase, ascorbate peroxidase, superoxide dismutase and ascorbate, but not glutathione and the enzymes required to facilitate the regeneration of ascorbate from its oxidized forms. A weak induction in the activity of certain symplastic antioxidants was found after 14 d O3 fumigation, despite a lack of visible symptoms of injury, but shifts in symplastic antioxidant enzyme activity were not consistent with previously observed increases in resistance to O3 with plant age. By contrast, changes in 'unspecific' peroxidase activity and in the small pool of ascorbate in the leaf apoplast were found to accompany age-related shifts in O3 resistance. It is concluded that constituents of the leaf apoplast may constitute a potentially important front line defence against O3.  相似文献   

2.
The objective of the present study was to investigate whether peak concentrations of ozone can deplete the apoplastic ascorbate pool of needles from Norway spruce trees (Picea abies L. Karst.) and, thereby, contribute to damage to forest trees. Twigs of forest trees grown at high altitude (1950m above sea level; Mt Patscherkofel, Austria) were enclosed in situ in chambers and fumigated for 5-5 or 17 h with ozone concentrations ranging from 60 to 798 nmol mol?1. Adjacent branches were fumigated with filtered air. Ozone influx into the foliage ranging from 1-7 to 17nmolm?2s?1 had little effect on whole-needle ascorbate or glutathione contents. However, apoplastic ascorbate decreased by about 30% when the needles were exposed to environmentally relevant ozone concentrations and increased about 3-fold at higher ozone concentrations. This response suggests the induction of ascorbate as a protective system and may also be important under field conditions. Needles of spruce trees from high altitude that were exposed to chronically increased ozone concentrations contained significantly higher apoplastic ascorbate concentrations than needles from spruce trees from lower altitudes with lower mean atmospheric ozone concentrations. The results show that peak concentrations of ozone do not act in spruce via a depletion of the apoplastic ascorbate pool.  相似文献   

3.
Zhang F  Zhang H  Xia Y  Wang G  Xu L  Shen Z 《Plant cell reports》2011,30(8):1475-1483
We examined ameliorative effects of salicylic acid (SA) on two cadmium (Cd)-stressed legume crops with different Cd tolerances, viz. Phaseolus aureus (Cd sensitive) and Vicia sativa (Cd tolerant). Cd at 50 μM significantly increased the production of hydrogen peroxide (H2O2) and superoxide anion (O2·−) in root apoplasts of P. aureus and V. sativa. When comparing the two species, we determined that Cd-induced production of H2O2 and O2·− was more pronounced in P. aureus root apoplasts than in V. sativa root apoplasts. V. sativa had higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) than P. aureus in root symplasts and apoplasts. Seed-soaking pretreatment with 100 μM SA decreased Cd-induced production of H2O2 and O2·− in apoplasts of both species, and increased activities of symplastic and apoplastic SOD, symplastic APX, and apoplastic CAT under Cd stress. Hence, SA-induced Cd tolerances in P. aureus and V. sativa are likely associated with increases in symplastic and apoplastic antioxidant enzyme activities.  相似文献   

4.
The aim was to measure the respective contributions of apoplast and symplast to the Cd root uptake and to explain the linear component of the symplastic absorption. Two plants were used, maize (Zea mays L.) and two ecotypes of alpine pennycress (Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey.), with contrasted abilities to accumulate Cd. Their roots were exposed to labelled Cd solutions of increasing concentrations. Root Cd was physico-chemically fractioned to obtain the exchanged apoplastic, non-exchanged apoplastic and symplastic pools. For both species, the proportion of Cd retained by the cell walls increased with Cd concentration in the exposure solution (ranging from 0.05 to 50 μmol L?1), from approximately 30% to 90% of the total root Cd. This was modeled using Freundlich isotherms. The non-exchanged apoplastic Cd was negligible at the highest exposure concentrations, but reached almost 30% of the total root uptake at the lowest ones. The symplastic influx in roots of both species fitted a Michaelis-Menten function associated with a linear one. The linear component of the symplastic influx could reflect absorption through a low-affinity transport system (LATS). The strong adsorption of Cd on root apoplast might act as a driving force to extract the metal from the soil, compete with the symplastic absorption and contribute to the amount of element taken up by the plant, at least in its roots.  相似文献   

5.
In the last decade extensive research has focused on the development of dose–response relationships based on stomatal plant ozone uptake (phytotoxic ozone dose, POD). So far most work has concentrated on crops and forest trees. This study provides a flux-based dose–response function for timothy (Phleum pratense), a widespread grassland species, which can be used in risk assessment for ground-level ozone. In 1996 and 2001 timothy was exposed in open-top chambers to ozone concentrations ranging from around 10 nmol mol−1 in the charcoal filtered treatments up to 60 nmol mol−1 in the fumigated treatments (08:00–20:00) in. In 1996 there was a negative effect of ozone on biomass production in the non-filtered treatment while in 2001 no such ozone effect in the non-filtered treatment could be seen. Measurements of stomatal conductance on four timothy genotypes in 2001 were used to calibrate a Jarvis-type multiplicative stomatal conductance model. The maximum conductance varied between the genotypes, from 477 to 589 mmol O3 m−2 s−1 (projected leaf area). The model includes functions describing the reduction of stomatal conductance of senescing leaves and the direct effects on stomatal conductance by light, temperature and water vapour pressure deficit. A function describing ozone induced senescence of the leaves was included since exposure to ozone is known to cause premature senescence. The function for ozone was applied when it suggested ozone to be more limiting to stomatal conductance than phenology. To avoid overestimation of stomatal conductance in days with high VPD, a function reflecting the effect on leaf water potential on stomatal conductance was included. Comparison between modelled and measured conductance for the four timothy genotypes resulted in an r2 value at 0.57 and a very small average deviation of observed from modelled values. The calibrated stomatal conductance model was used to estimate the accumulated POD, i.e. the accumulated stomatal flux of ozone, of the plants in the 1996 and 2001 experiments. The strongest relationship between ozone relative effects on biomass was obtained when POD was accumulated from 105 degree days after emergence to 1000 degree days after emergence, and integrated using an uptake rate threshold of 7 nmol m−2 s−1 (POD7). The response relationship between biomass and POD7 resulted in an r2 value of 0.71 over all four genotypes. This r2 value was somewhat higher than for the corresponding relationship based on the accumulated ozone exposure over 40 nmol mol−1 (AOT40; r2 = 0.66). With an uptake rate threshold at 7 nmol m−2 s−1, ozone concentrations above ∼20 nmol mol−1, contribute to reduce the biomass production of timothy if meteorological conditions promote maximum stomatal conductance.  相似文献   

6.
 To investigate the effects of ozone exposure and soil drought, singly and in combination, on gas exchange, antioxidant contents and pigments in current-year needles of Norway spruce [Picea abies (L.) Karst.] 4-year-old seedlings were fumigated in growth chambers with either charcoal-filtered air or with 100 nl l–1 ozone for 106 days. After 3 weeks a 20% reduction in gas exchange was observed in ozone-treated seedlings. However, no further decrease occurred in spite of continued ozone exposure. Whole needle ascorbate and apoplastic ascorbate increased until the end of the experiment and contents were 62% and 82%, respectively, higher than in ozone-free controls. This increase in ascorbate might have protected net photosynthesis from further decline. Ozone pre-treated plants and ozone-free controls were subjected to soil drought for 38 days which caused stomatal narrowing. Thereby ozone uptake was reduced when compared to well watered seedlings. At the end of the experiment drought alone, and even more in combination with ozone, had also caused an increase in ascorbate. Glutathione increased only in drought-stressed seedlings. The redox states of the ascorbate and the glutathione pools were not affected by any treatment. Superoxide dismutase activity declined under both stresses but was most reduced by ozone alone. While chlorophyll and neoxanthin contents remained unchanged, carotenes were significantly decreased upon drought. The combination of O3 and drought induced increased lutein contents, an increased pool size of the xanthophyll cycle as well as an increased epoxidation status of the xanthophyll cycle. These results suggest that spruce needles seem to be able to acclimate to ozone stress but also to drought stress by increasing their ascorbate pools and protecting pigments. Received: 15 September 1997 / Accepted: 24 March 1998  相似文献   

7.
Concentrations of the antioxidants ascorbate and glutathione were measured in the apoplast of beech (Fagus sylvatica L.) leaves and in leaf tissue. During early leaf development, reduced ascorbate (ASC) was almost absent from the apoplast, whereas levels of oxidized ascorbate (DHA) were high. Less than 20% of the apoplastic ascorbate was reduced. ASC increased towards midsummer, reaching top levels of about 4molm?3 apoplast volume in July and August. Reduction increased to 60–75% in summer. Neither DHA reductase nor glutathione was detected in the apoplast of beech leaves. Levels of apoplastic ascorbate were compared with ambient concentrations of ozone in air. Statistical analysis indicated a significant interrelation between atmospheric ozone and apoplastic ascorbate. In midsummer of 1993, contents of DHA were increased in the apoplast when ozone concentrations were high. Apoplastic ASC was also positively correlated with ambient ozone concentrations, but with a delay of 3 to 7d. In leaf tissue, levels of ascorbate were between 17 and 21 μmolg?1 FW in summer. Except for late April and November, more than 95% of the intracellular ascorbate was reduced. Glutathione contents were lowest during the summer. Oxidation was increased in spring and autumn, when apoplastic ascorbate was also largely oxidized. Usually, 80 to 90% of the glutathione was reduced. During the summer, intracellular concentrations of oxidized glutathione (GSSG) were increased, with a delay of about 1d following periods of high ambient ozone concentrations. The transitory accumulation of GSSG may be explained by slow enzymatic regeneration of glutathione.  相似文献   

8.
Transgenic tobacco plants expressing the ascorbate oxidase (AAO) gene in sense and antisense orientations, and an Arabidopsis mutant in which the T-DNA was inserted into a putative AAO gene, were used to examine the potential roles of AAO for salt-stress tolerance in plants. AAO activities in the transgenic tobacco plants expressing the gene in sense and antisense orientations were, respectively, about 16-fold and 0.2-fold of those in the wild type. Under normal growth conditions, no significant differences in phenotypes were observed, except for a delay in flowering time in the antisense plants. However, at high salinity, the percentage germination, photosynthetic activity, and seed yields were higher in antisense plants, with progressively lower levels in the wild type and the sense plants. The redox state of apoplastic ascorbate in sense plants was very low even under normal growth conditions. Upon salt stress, the redox state of symplastic and apoplastic ascorbate decreased among the three types of plants, but was lowest in the sense plants. The hydrogen peroxide contents in the symplastic and apoplastic spaces were higher in sense plants, progressively lower in the wild type, followed by the antisense plants. The Arabidopsis T-DNA inserted mutant exhibited very low ascorbate oxidase activity, and its phenotype was similar to that of antisense tobacco plants. These results suggest that the suppressed expression of apoplastic AAO under salt-stress conditions leads to a relatively low level of hydrogen peroxide accumulation and a high redox state of symplastic and apoplastic ascorbate which, in turn, permits a higher seed yield.  相似文献   

9.
An experimental set-up which enabled non-invasive, real-time reactive oxygen species (ROS) visualization on a whole plant level was constructed. In the test organism, Lemna minor L. (common duckweed), apoplastic and symplastic oxidative stress was evaluated by exposure to menadione (50 μM), menadione (50 μM) + ascorbate (100 μM) or neither for control. Menadione (50 μM) caused a statistically significant increase in H2DCFDA fluorescence in the apoplast after 60 minutes of exposure. The addition of ascorbate (100 μM) in the test medium significantly decreased apoplastic oxidative stress. 50 μM menadione caused an increase in symplastic H2DCFDA fluorescence in 57% of fronds. The exposure of L. minor plants to both menadione and ascorbate decreased the rate of fluorescence intensity accumulation in the symplast to control levels. The method has proven to be quick and straightforward and could be applied to a range of chemicals in various physiological and toxicological plant studies. The advantages of the set-up and different possible artefacts are discussed.  相似文献   

10.
By isoelectric focusing, transcobalamin from human cerebrospinal fluid was separated into the phenotypes X, M, MX, SX and MS. The corresponding plasma transcobalamins were of identical phenotypes. The unsaturated cobalamin-binding capacity in the cerebrospinal fluid was 0.12–0.54 nmol·l−1, median 0.23 nmol·l−1; no difference in binding capacity was found between the individual phenotypes. The isopeptides M, X and S bound cyano[57Co]cobalamin from pH 6 to 10. The apparent affinity constant was the same for all the isopeptides (0.4·1012 l·mol−1, pH 7.4. The isopeptide-cobalamin complexes bound to acceptors and human placenta membranes with an apparent affinity constant of 11·109 l·mol−1, pH 7.4.  相似文献   

11.
CO2 responsiveness of plants: a possible link to phloem loading   总被引:5,自引:3,他引:2  
Of the many responses of plants to elevated CO2, accumulation of total non-structural carbohydrates (TNC in % dry weight) in leaves is one of the most consistent. Insufficient sink activity or transport capacity may explain this obvious disparity between CO2 assimilation and carbohydrate dissipation and structural investment. If transport capacity contributes to the problem, phloem loading may be the crucial step. It has been hypothesized that symplastic phloem loading is less efficient than apoplastic phloem loading, and hence plant species using the symplastic pathway and growing under high light and good water supply should accumulate more TNC at any given CO2 level, but particularly under elevated CO2. We tested this hypothesis by carrying out CO2 enrichment experiments with 28 plant species known to belong to groups of contrasting phloem-loading type. Under current ambient CO2 symplastic loaders were found to accumulate 36% TNC compared with only 19% in apoplastic loaders (P=0.0016). CO2 enrichment to 600 μmol mol?1 increased TNC in both groups by the same absolute amount, bringing the mean TNC level to 41% in symplastic loaders (compared to 25% in apoplastic loaders), which may be close to TNC saturation (coupled with chlornplast malfunction). Eight tree species, ranked as symplastic loaders by their minor vein companion cell configuration, showed TNC responses more similar to those of apoplastic herbaceous loaders. Similar results are obtained when TNC is expressed on a unit leaf area basis, since mean specific leaf areas of groups were not significantly different. We conclude that phloem loading has a surprisingly strong effect on leaf tissue composition, and thus may translate into alterations of food webs and ecosystem functioning, particularly under high CO2.  相似文献   

12.
Calatayud  A.  Alvarado  J.W.  Barreno  E. 《Photosynthetica》2001,39(4):507-513
Its high oxidant capacity and ability to generate reactive oxygen species cause ozone toxicity. We studied the effect of ambient ozone on chlorophyll (Chl) a fluorescence, antioxidant enzymes, ascorbate contents, and lipid peroxidation in potatoes grown in open-top chambers in the field. In plants grown in non-filtered air (NFA), the development of non-photochemical quenching brought about a decrease in photosystem 2 (PS2) photochemical efficiency. Also the ability of PS2 to reduce the primary acceptor QA was lower than in charcoal-filtered, ozone-free air (CFA). Changes in Chl fluorescence yield were associated with changes in the thylakoid membrane. Ozone altered chloroplast membrane properties, as indicated by an increase in membrane lipid peroxidation in FNA-leaves compared to CFA plants. The ascorbate pool and activities of antioxidant enzymes were used for an indication of the detoxification system state in NFA and CFA leaves, whereby ozone affects the ascorbate concentration and decreases the antioxidant enzymes activities. The capacity of both detoxifying systems together was not high enough to protect potato plants against ambient ozone concentrations which reduced the photosynthetic yield in this potato cultivar.  相似文献   

13.
Onion (Allium cepa L.) roots treated with external ascorbate or with the immediate precursor of its synthesis, L-galactono-γ-lactone, increased root development measured as an increase in fresh and dry weights after 48-h treatments compared to controls. Also, treatments induced changes in extracellular (apoplastic) and cytosolic (symplastic) enzyme activities related to ascorbate metabolism and antioxidant protection, such as ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and catalase. Finally, we have found that both chemicals induced increased content of hydrogen peroxide in well-differentiated zones of the root, and local increases in meristematic and elongation zones were detected by cytochemistry as well. The results are discussed on the basis of changes in the root growth rate and other physiologic processes mediated by ascorbate in higher plants.  相似文献   

14.
We aimed to show that a chronic and realistic ozone stress could induce in vivo formation of carbonyl groups in leaf proteins of bean (Phaseolus vulgaris L. cv Bergamo). Plants were grown in three open-top chambers with increasing ozone concentrations: non-filtered air (NF), NF+40 nL·L–1, NF+80 nL·L–1 ozone 7 h·d–1 for 22 d. Carbonyl contents in proteins, evaluation of Rubisco (EC 4.1.1.39) amounts and visible damages were systematically investigated in primary and first trifoliate leaves. Visible ozone injuries clearly reflected the total external ozone dose (expressed as AOT40) that the leaf had suffered. Ozone was effective at inducing aldehydes and ketones formation in bean proteins. This production of carbonyl groups increased with ozone concentration, the most relevant difference being observed on the Rubisco small subunit (Rubisco SSU). Contrary to young first trifoliate leaves, older primary leaves from O3-enriched atmospheres exhibited a two-fold decrease in Rubisco level. Carbonyl group formation in Rubisco SSU and decrease in Rubisco level were not necessarily linked. Depending on ozone concentration, exposure time and leaf age, these two effects were observed either together or separately for an almost similar external dose of ozone. To conclude, leaf symptoms, loss of Rubisco and oxidized Rubisco SSU could participate in the assessment of the impact of a chronic ozone stress.  相似文献   

15.
Levels of the stilbene glucosides astringin and isorhapontin, the main constitutive antifungal compounds in bark tissues of spruce trees, were not altered in young Picea sitchensis (Bong.) Carr. or Picea abies (L.) Karst. trees exposed to sulphur dioxide and ozone in the Liphook Forest Fumigation Project. These trees had received computer-controlled fumigation treatments with two levels of SO2 (long-term means 13 and 22nmol mol?1) or one level of O3 (1–3.times ambient), or a combination of these treatments, from spring until December. Resistance of bark tissues from these trees to colonization by the root- and butt-rot pathogen Heterobasidion annosum (Fr.) Bref., assessed in vitro using excised stem lengths, was not significantly altered in fumigated plants compared with those exposed to ambient pollutant levels only. This study therefore provided no evidence for altered disease resistance in P. abies and P. sitchensis trees exposed to SO2 and O3.  相似文献   

16.
In the last decades, plant resistance to drought conditions has been studied intensively both at whole-tree level and at tissue level. These studies have highlighted the role of xylem cavitation in the global resistance of plants to drought. In this paper, we investigate the coordination among several symplastic variables during intense drought conditions and its relationship to resistance to xylem cavitation. We selected 2-year-old seedlings of Pistacia lentiscus L. and Quercus coccifera L., two Mediterranean drought-resistant species with differences in both xylem vulnerability to cavitation and survival rates under field conditions. Drought provoked large decreases in photosynthetic rates and predawn Fv/Fm ratios, as well as less marked decreases in actual PSII efficiency (due to decreases in both intrinsic PSII efficiency and photochemical quenching). Photosynthetic pigment composition remained fairly unchanged down to water potentials of −8 MPa, despite inter-conversions within the xanthophyll cycle in both species. Cell membrane injury and proline accumulation followed similar patterns, and were much more intense in P. lentiscus than in Q. coccifera. Comparisons between variables revealed that both species: (i) followed a drought avoidance strategy, (ii) were very resistant to drought conditions at symplastic level, and (iii) showed an overall good relationship between apoplast (xylem cavitation) and symplast resistance (membrane stability, PSII functionality, proline accumulation and pigment composition). Differences between species in functional symplastic and apoplastic characteristics are discussed.  相似文献   

17.
Abstract. In experiments where mung beans ( Vigna radiata L.) and peas ( Pisum sativum L.) have been pre-exposed to ethylene and afterwards treated with ozone, it has been shown that such ethylenepretreated plants may become more resistant to ozone. Further experiments with hydrogen peroxide (H2O2) and the herbicide paraquat suggest that this increased resistance against ozone depends on the stimulation of ascorbate peroxidase activity which provides cells with increased resistance against the formation of H2O2 which is also formed when plants are fumigated with ozone. These results explain why increased production of ethylene can be observed in plants exposed with ozone or other oxidative stress and clearly demonstrate that in plants, as well as animals, peroxidases protect cells against harmful concentrations of hydroperoxides.  相似文献   

18.
The high disease resistance of the amphidiploid hybrid of Nicotiana glutinosa x Nicotiana debneyi is associated with high constitutive levels of two phenolic compounds as analysed by high-performance liquid chromatography. The structures of these two compounds were elucidated by means of gas chromatography-tandem mass spectrometry, fluorescence- and light-spectrophotometry to be those of scopolin and scopoletin. They reached levels of 4 nmol·(g FW)?1 and 35 nmol·(g FW)?1, respectively, in leaf tissues of the hybrid, about 10–50 times the amount found in the parental species. Scopoletin showed a direct antimicrobial activity against Cercospora nicotianae, Phytophthora parasitica var. nicotianae, Pseudomonas syringae pvs. tabaci and syringae and tobacco mosaic virus when added to synthetic growth media, mixed with the inoculum or sprayed onto tobacco plants prior to inoculation. We postulate that the high amount of toxic phenolics in the leaves of the hybrid N. glutinosa x N. debneyi contributes to its high disease resistance.  相似文献   

19.
The shoots of fireweed (Chamerion angustifolium (L.) Holub) and common flax (Linum usitatissimum L.) were infused with 50 mM KNO3 solution to compare the influence of nitrate on photosynthesis and assimilate export from leaves in plants with the symplastic and apoplastic phloem loading, respectively. The infusion of nitrate in the shoots of both plant species lowered 14CO2 fixation and enhanced the assimilate transport in the upward direction. Irrespective of the phloem loading type, the incorporation of 14C into sucrose decreased in nitrate-treated seedlings exposed to assimilation for short (3 min) periods. However, when shoots were sampled 3 h after 14CO2 fixation, the content of 14C-labeled sucrose was higher in treated plants than in control seedlings infused with water. In fireweed, in contrast to flax, a similar temporal pattern was also characteristic for 14C incorporation into oligosaccharides. Within 3 h after nitrate infusion into the fireweed apoplast, the mitochondria and the cell vacuolar system underwent ultrastructural changes indicative of the increase in cytosolic osmotic pressure. At the same time, we observed accumulation of fibrillar inclusions in cell vacuoles of vascular bundles. It is concluded that the mechanisms of nitrate influence on photosynthesis and sugar export in leaves of symplastic and apoplastic plants are similar to a certain extent and involve the blocking of pores in phloem tubes, initiated by the NO-signaling system.  相似文献   

20.
Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were exposed to near ambient or elevated CO2 (average concentrations during the last growing season 446 versus 699 mol mol–1), combined with low or elevated O3 for three seasons. Ozone exposure during the last growing season (accumulated dose above threshold 0.06 mol mol–1) was 0.05 versus 26.13 mol mol–1 h. Needles of the youngest age class were harvested after the dormancy period. Ozone exposure decreased needle contents of chlorophyll a, chlorophyll b, and ascorbate, and resulted in a more oxidized total ascorbate and a more de-epoxidized xanthophyll cycle pool irrespective of the CO2 level. Trees under elevated CO2 had a more oxidized glutathione pool and lower chlorophyll a content. Contents of glutathione, tocopherol, and carotenoids were not affected by the CO2 or O3 treatments. There were no interactive effects between elevated CO2 and elevated O3 on any of the parameters measured. The results suggest that elevated atmospheric CO2 concentration does not compensate for ozone stress by increasing antioxidative capacity in ponderosa pine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号