首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Emerging resistance of human pathogens to anti-infective agents make it necessary to develop new agents to treat infection. The methylerythritol phosphate pathway has been identified as an anti-infective target, as this essential isoprenoid biosynthetic pathway is widespread in human pathogens but absent in humans. The first enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase, catalyzes the formation of DXP via condensation of D-glyceraldehyde 3-phosphate (D-GAP) and pyruvate in a thiamine diphosphate-dependent manner. Structural analysis has revealed a unique domain arrangement suggesting opportunities for the selective targeting of DXP synthase; however, reports on the kinetic mechanism are conflicting. Here, we present the results of tryptophan fluorescence binding and kinetic analyses of DXP synthase and propose a new model for substrate binding and mechanism. Our results are consistent with a random sequential kinetic mechanism, which is unprecedented in this enzyme class.  相似文献   

2.
3.
The methylerythritol phosphate pathway to isoprenoids, an alternate biosynthetic route present in many bacteria, algae, plants, and the malarial parasite Plasmodium falciparum, has become an attractive target for the development of new antimalarial and antibacterial compounds. The second enzyme in this pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; EC 1.1.1.267), has been shown to be the molecular target for fosmidomycin, a promising antimalarial drug. This enzyme converts 1-deoxy-D-xylulose 5-phosphate (DXP) into the branched compound 2-C-methyl-D-erythritol 4-phosphate (MEP). The transformation of DXP into MEP requires an isomerization, followed by a NADPH-dependent reduction. The discovery of DXR, its subsequent characterization, and the identification of inhibitors will be presented.  相似文献   

4.
myo-Inositol 1-phosphate synthase (EC 5.5.1.4) (IPS) is a key enzyme in myo-inositol biosynthesis pathway. This study describes the molecular cloning of the full length human myo-inositol 1-phosphate synthase (hIPS) cDNA, tissue distribution of its mRNA and characterizes its gene expression in cultured HepG2 cells. Human testis, ovary, heart, placenta, and pancreas express relatively high level of hIPS mRNA, while blood leukocyte, thymus, skeletal muscle, and colon express low or marginal amount of the mRNA. In the presence of glucose, hIPS mRNA level increases 2- to 4-fold in HepG2 cells. hIPS mRNA is also up-regulated 2- to 3-fold by 2.5 microM lovastain. This up-regulation is prevented by mevalonic acid, farnesol, and geranylgeraniol, suggesting a G-protein mediated signal transduction mechanism in the regulation of hIPS gene expression. hIPS mRNA expression is 50% suppressed by 10mM lithium ion in these cells. Neither 5mM myo-inositol nor the three hormones: estrogen, thyroid hormone, and insulin altered hIPS mRNA expression in these cells.  相似文献   

5.
In eubacteria, green algae, and plant chloroplasts, isopentenyl diphosphate, a key intermediate in the biosynthesis of isoprenoids, is synthesized by the methylerythritol phosphate pathway. The five carbons of the basic isoprenoid unit are assembled by joining pyruvate and D-glyceraldehyde 3-phosphate. The reaction is catalyzed by the thiamine diphosphate-dependent enzyme 1-deoxy-D-xylulose 5-phosphate synthase. In Rhodobacter capsulatus, two open reading frames (ORFs) carry the genes that encode 1-deoxy-D-xylulose 5-phosphate synthase. ORF 2816 is located in the photosynthesis-related gene cluster, along with most of the genes required for synthesis of the photosynthetic machinery of the bacterium, whereas ORF 2895 is located elsewhere in the genome. The proteins encoded by ORF 2816 and ORF 2895, 1-deoxy-D-xylulose 5-phosphate synthase A and B, containing a His(6) tag, were synthesized in Escherichia coli and purified to greater than 95% homogeneity in two steps. 1-Deoxy-D-xylulose 5-phosphate synthase A appears to be a homodimer with 68 kDa subunits. A new assay was developed, and the following steady-state kinetic constants were determined for 1-deoxy-D-xylulose 5-phosphate synthase A and B: K(m)(pyruvate) = 0.61 and 3.0 mM, K(m)(D-glyceraldehyde 3-phosphate) = 150 and 120 microM, and V(max) = 1.9 and 1.4 micromol/min/mg in 200 mM sodium citrate (pH 7.4). The ORF encoding 1-deoxy-D-xylulose 5-phosphate synthase B complemented the disrupted essential dxs gene in E. coli strain FH11.  相似文献   

6.
The recently discovered 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of plastid isoprenoids (including carotenoids) is not fully elucidated yet despite its central importance for plant life. It is known, however, that the first reaction completely specific to the pathway is the conversion of 1-deoxy-D-xylulose 5-phosphate (DXP) into MEP by the enzyme DXP reductoisomerase (DXR). We have identified a tomato cDNA encoding a protein with homology to DXR and in vivo activity, and show that the levels of the corresponding DXR mRNA and encoded protein in fruit tissues are similar before and during the massive accumulation of carotenoids characteristic of fruit ripening. The results are consistent with a non-limiting role of DXR, and support previous work proposing DXP synthase (DXS) as the first regulatory enzyme for plastid isoprenoid biosynthesis in tomato fruit. Inhibition of DXR activity by fosmidomycin showed that plastid isoprenoid biosynthesis is required for tomato fruit carotenogenesis but not for other ripening processes. In addition, dormancy was reduced in seeds from fosmidomycin-treated fruit but not in seeds from the tomato yellow ripe mutant (defective in phytoene synthase-1, PSY1), suggesting that the isoform PSY2 might channel the production of carotenoids for abscisic acid biosynthesis. Furthermore, the complete arrest of tomato seedling development using fosmidomycin confirms a key role of the MEP pathway in plant development.  相似文献   

7.
1-脱氧-D-木酮糖-5-磷酸合成酶(1-deoxy-D-xylulose 5-phosphate synthase,DXS)是植物萜类代谢通路中2-C-甲基-D-赤藓糖醇-4-磷酸(MEP)途径的第一个关键酶,在植物萜类物质的生物合成中发挥重要的作用.为了研究该基因在冬凌草二萜类成分合成中的作用,该研究在冬凌草转录组测序结果的基础上设计一对特异性引物,采用RT-PCR方法得到冬凌草IrDXS基因cDNA全长序列,并对其蛋白进行理化性质分析、信号肽预测、亚细胞定位预测、蛋白质二级结构、三级结构预测分析及跨膜域分析等生物信息学分析,同时利用实时荧光定量PCR的方法检测IrDXS基因在冬凌草不同部位中的表达情况.结果表明:从冬凌草叶片中分离得到了一条编码DXS的全长基因,通过生物信息学软件分析发现,该基因编码全长2169 bp,编码722个氨基酸,分子量为77.7 kD.多序列比对发现该基因编码的蛋白和其他植物中已知的DXS蛋白序列具有较高的同源性,N端均包含了一段质体转运肽序列,并均具有一个保守的焦磷酸硫胺素结构域和与吡啶结合相关的DRAG结构域.序列进化树分析显示,IrDXS基因属于植物DXS2家族.DXS基因在冬凌草根中表达量最高、愈伤组织中最低.该研究首次获得了IrDXS基因的全长cDNA序列,并揭示了其在不同组织中的表达差异,为后续的深入研究IrDXS基因在冬凌草二萜类成分合成途径中的功能奠定了基础.  相似文献   

8.
A novel 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene of 1.35 kb was cloned from a cosmid library of Halomonas variabilis HTG7, inserted into vector pET-28a (+) and transformed in Escherichia coli BL21 (DE3). EPSPS was over-expressed in soluble form after induction with IPTG at 30 degrees C and it showed a single band in SDS-PAGE, which corresponds to a molecular weight of 51 kD. Deduced amino acid sequence analysis showed that there is little homology with the aroA genes which encode glyphosate-tolerant EPSPS in known sources, such as E. coli K12 and Agrobacterium sp. CP4. The over-expressed EPSPS was purified on nickel-nitrilotriacetic acid resin and detected by Western blotting analysis. Enzyme activity measurements demonstrated that there were 4.27 units/mg in cell extract, compared with 0.049 units/mg of the control. There is an 87-fold increase in specific activity for EPSPS.  相似文献   

9.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the mevalonate-independent isopentenyl diphosphate biosynthetic pathway and is a potential drug target in some pathogenic bacteria. The antibiotic fosmidomycin has been shown to inhibit IspC in a number of organisms and is active against most gram-negative bacteria but not gram positives, including Mycobacterium tuberculosis, even though the mevalonate-independent pathway is the sole isopentenyl diphosphate biosynthetic pathway in this organism. Therefore, the enzymatic properties of recombinant IspC from M. tuberculosis were characterized. Rv2870c from M. tuberculosis converts 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol 4-phosphate in the presence of NADPH. The enzymatic activity is dependent on the presence of Mg(2+) ions and exhibits optimal activity between pH 7.5 and 7.9; the K(m) for 1-deoxyxylulose 5-phosphate was calculated to be 47.1 microM, and the K(m) for NADPH was 29.7 microM. The specificity constant of Rv2780c in the forward direction is 1.5 x 10(6) M(-1) min(-1), and the reaction is inhibited by fosmidomycin, with a 50% inhibitory concentration of 310 nM. In addition, Rv2870c complements an inactivated chromosomal copy of IspC in Salmonella enterica, and the complemented strain is sensitive to fosmidomycin. Thus, M. tuberculosis resistance to fosmidomycin is not due to intrinsic properties of Rv2870c, and the enzyme appears to be a valid drug target in this pathogen.  相似文献   

10.
The terpenoid indole alkaloid (TIA) pathway in Catharanthus roseus produces two important anticancer drugs, vinblastine and vincristine, in very low yields. This study focuses on overexpressing several key genes in the upper part of the TIA pathway in order to increase flux toward downstream metabolites within hairy root cultures. Specifically, we constructed hairy root lines with inducible overexpression of 1-deoxy-D-xylulose synthase (DXS) or geraniol-10-hydroxylase (G10H). We also constructed hairy root lines with inducible expression of DXS and anthranilate synthase α subunit (ASA) or DXS and G10H. DXS overexpression resulted in a significant increase in ajmalicine by 67%, serpentine by 26% and lochnericine by 49% and a significant decrease in tabersonine by 66% and h?rhammericine by 54%. Co-overexpression of DXS and G10H caused a significant increase in ajmalicine by 16%, lochnericine by 31% and tabersonine by 13%. Likewise, DXS and ASA overexpression displayed a significant increase in h?rhammericine by 30%, lochnericine by 27% and tabersonine by 34%. These results point to the need for overexpressing multiple genes within the pathway to increase the flux toward vinblastine and vincristine.  相似文献   

11.
12.
甘油脱水酶是催化由甘油到1,3-丙二醇过程中的关键酶,它需要在辅酶B_(12)存在的情况下才能有效的进行催化;而在此催化过程中甘油脱水酶会出现失活现象,研究表明辅酶B_(12)可以有效的促使甘油脱水酶复活。因此,辅酶B_(12)在由甘油生物催化生产1,3-丙二醇过程中起到非常重要的作用。本研究利用PCR扩增技术,从Escherichia K-12菌株中扩增出产VB_(12)关键酶—腺苷钴胺素合成酶基因cobs,其序列与NCBI上已经公布的序列比对,同源性为99.6%,将基因cobs与产1,3-丙二醇关键酶基因dhaB、yqhD在Klebsiella pneumoniae中共表达,发酵结果显示重组菌所需额外添加的VB_(12)由原始菌株的0.01 g/L下降到0.004 g/L。  相似文献   

13.
5-enolpyruvylshikimate 3-phosphate synthase (EPSPS; 3-phosphoshikimate 1-carboxyvinyl-transferase; EC 2.5.1.19) is a critical enzyme in the shikimate pathway. The full-length EPSPS cDNA sequence (CaEPSPS, GenBank accession number: AY639815) was cloned and characterized for the first time from woody plant, Camptotheca acuminata, using rapid amplification of cDNA ends (RACE) technique. The full-length cDNA of CaEPSPS was 1778 bp containing a 1557 bp ORF (open reading frame) encoding a polypeptide of 519 amino acids with a calculated molecular mass of 55.6 kDa and an isoelectric point of 8.22. Comparative and bioinformatic analyses revealed that CaEPSPS showed extensive homology with EPSPSs from other plant species. CaEPSPS contained two highly conserved motifs owned by plant and most bacteria EPSPSs in its N-terminal region. Phylogenetic analysis revealed that CaEPSPS belonged to dicotyledonous plant EPSPS group. Tissue expression pattern analysis indicated that CaEPSPS was constitutively expressed in leaves, stems and roots, with the lower expression being found in roots. The coding sequence of CaEPSPS gene was successfully subcloned in a plasmid-Escherichia coli system (pET-32a), and the cells containing the plasmid carrying the CaEPSPS gene exhibited enhanced tolerance to herbicide glyphosate, compared to the control.  相似文献   

14.
15.
The structure of amplified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) DNA of carrot suspension-cultured cell lines selected for glyphosate resistance was analyzed to determine the mechanism of gene amplification in this plant system. Southern hybridization of the amplified DNA digested with several restriction enzymes probed with a petunia EPSPS cDNA clone showed that there were differences in fragment sizes in the amplified DNA from one highly resistant cell line in comparison with the parental line. Cloning of the EPSPS gene and 5 flanking sequences was carried out and two different DNA structures were revealed. A 13 kb clone contained only one copy of the EPSPS gene while a 16 kb clone contained an inverted duplication of the gene. Southern blot analysis with a carrot DNA probe showed that only the uninverted repeated DNA structure was present in all of the cell lines during the selection process and the inverted repeat (IR) was present only in highly amplified DNA. The two structures were present in about equal amounts in the highly amplified line, TC 35G, where the EPSPS gene was amplified about 25-fold. The presence of the inverted repeat (IR) was further verified by resistance to S1 nuclease hydrolysis after denaturation and rapid renaturation, showing foldback DNA with the IR length being 9.5 kb. The junction was also sequenced. Mapping of the clones showed that the size of the amplified carrot EPSPS gene itself is about 3.5 kb. This is the first report of an IR in amplified DNA of a target enzyme gene in selected plant cells.  相似文献   

16.
Strictosidine synthase (STR) is a key enzyme in the biosynthesis of terpenoid indole alkaloids. This class of secondary metabolites harbours several pharmaceutically important compounds used, among other applications, in cancer treatment. Terpenoid indole alkaloid biosynthesis and expression of biosynthetic genes including Str1 is induced by fungal elicitors. To identify elicitor-responsive regulatory promoter elements and trans-acting factors, the single-copy Str1 gene was isolated from the subtropical plant species Catharanthus roseus (Madagascar periwinkle). Str1 upstream sequences conferred elicitor-responsive expression to the -glucuronidase (gusA) reporter gene in transgenic tobacco plants. Main enhancer sequences within the Str1 promoter region studied were shown to be located between –339 and –145. This region and two other regions of the promoter bound the tobacco nuclear protein factor GT-1. A G-box located around position –105 bound nuclear and cloned G-box-binding factors (GBFs). A mutation that knocked out GBF binding had no measurable effect on expression, which indicates that the G-box is not essential for the elicitor responsiveness of the Str1 promoter. No obvious homologies with promoter elements identified in other elicitor-responsive genes were observed, suggesting that the Str1 gene may depend on novel regulatory mechanisms.  相似文献   

17.
18.
19.
Bcl-2/adenovirus E1B 19 kDa interacting protein 2 like-1 (BNIPL-1) is a novel human protein identified in our laboratory, which can interact with Bcl-2 and Cdc42GAP and induce apoptosis via the BNIP-2 and Cdc42GAP homology (BCH) domain. In the present study, we established the Hep3B-Tet-on stable cell line in which expression of BNIPL-1 can be induced by doxycycline. The cell proliferation activity assay showed that the overexpression of BNIPL-1 suppresses Hep3B cell growth in vitro. The differential expression profiles of 588 known genes from BNIPL-1-transfected Hep3B-Tet-on and vector control cells were determined using the Atlas human cDNA expression array. Fifteen genes were differentially expressed between these two cell lines, among which seven genes were up-regulated and eight genes were down-regulated by BINPL-1. Furthermore, the differential expression result was confirmed by semiquantitative RT-PCR. Among these differentially expressed genes, p16^INK4, IL-12, TRAIL and the lymphotoxin β gene involved in growth suppression or cell apoptosis were up-regulated, and PTEN involved in cell proliferation was down-regulated by BNIPL-1. These results suggest that BNIPL-1 might inhibit cell growth though cell cycle arrest and/or apoptotic cell death pathway(s).  相似文献   

20.
The components of rose essential oil are mainly monoterpene alcohols, predominantly synthesized through the methylerythritol 4-phosphate (MEP) pathway in plants. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is specified to be a first committed enzyme of the MEP pathway. In order to understand better the role of DXR in the rose essential oil biosynthesis at the molecular level, the full-length cDNA of DXR sequence (designated as RhDXR) was isolated from an oil-bearing rose hybrid Rosa cv. Zizhi and characterized, and the expression profile of it was investigated. Essential oils of rose cv. Zizhi and the other five oil-bearing roses were distilled to evaluate the relationship between the expression of DXR gene and oil yield rate. The full-length cDNA of RhDXR was 1915 bp in length, comprised an open reading frame of 1419 bp, encoding an enzyme of 472 amino acids. A comparative analysis with DXRs of selected species from bacteria to higher plants revealed three conserved domains: a conserved cleavage site for plastids, an extended Prorich region, and a highly conserved NADPH oxidase-binding motif existing in the N-terminal region, like in other higher plant species. The relative expression levels of the DXR gene were determined in various tissues: receptacle, leaf, sepal, pistil, stamen, and petal (in the order of decreasing expression level), and at different flowering stages (flower bud, flower in half bloom, and flower in full bloom). Six cultivars could be classified into two groups according to flower color, and within each group there was a positive correlation between the expression level of DXR gene and oil yield rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号