首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is an important biological regulator. It can bind to heme iron and form NO+, involved in the synthesis of S-nitrosothiols (-SNOs). NO reacts with human hemoglobin (Hb) to produce the derivatives: S-nitrosylhemoglobin (-SNOHb) and nitrosylhemoglobin (HbNO). At neutral pH values, free NO does not react directly with the -SH groups of Hb. The reductive nitrosylation of Fe(III) heme upon reaction with NO has long been studied, but it is not yet completely known. To quantify the reaction of NO with Hb, we developed a new, sensitive (nanomolar concentration range) electrochemical assay to selectively measure HbNO and -SNOHb. The assay also allows the monitoring of free NO during the reaction with human Fe(III)Hb and Fe(II)HbO(2).  相似文献   

2.
S-nitrosylation in health and disease   总被引:9,自引:0,他引:9  
S-nitrosylation is a ubiquitous redox-related modification of cysteine thiol by nitric oxide (NO), which transduces NO bioactivity. Accumulating evidence suggests that the products of S-nitrosylation, S-nitrosothiols (SNOs), play key roles in human health and disease. In this review, we focus on the reaction mechanisms underlying the biological responses mediated by SNOs. We emphasize reactions that can be identified with complex (patho)physiological responses, and that best rationalize the observed increase or decrease in specific classes of SNOs across a spectrum of disease states. Thus, changes in the levels of various SNOs depend on specific defects in both enzymatic and non-enzymatic mechanisms of nitrosothiol formation, processing and degradation. An understanding of these mechanisms is crucial for the development of an integrated model of NO biology, and for effective treatment of diseases associated with dysregulation of NO homeostasis.  相似文献   

3.
Tunas are very active fish with a high aerobic capacity, but they also regularly perform burst swimming with massive production of lactic acid. The present study examines whether H(+) buffering by tuna haemoglobin (Hb) is elevated to cope with metabolic acidoses (by analogy with the high buffer capacity of tuna white musculature) or whether the Hb-H(+) binding properties resemble other teleosts that have low buffer values and high Haldane effects. H(+) titration of oxygenated and deoxygenated composite Hb from yellowfin tuna, skipjack tuna and bigeye tuna in 0.1 M KCl revealed low Hb-specific buffer values in all three tunas. Values at physiological pH were comparable to those reported in less active species such as carp and eel. The fixed acid Haldane effect was large (maximal uptakes of close to 4 mol H(+) per mol Hb tetramer upon deoxygenation). Thus, the Hb-H(+) binding properties of very active tuna species correspond to other teleosts. Low Hb buffer values may be a pre-requisite for the regulation of red blood cell pH via Na(+)/H(+) exchange. Approximately nine "neutral" groups were titratable in tuna Hbs, suggesting that two alpha-amino groups and seven histidine residues are titrated within each tetramer.  相似文献   

4.
Kinetic studies of formate dehydrogenase   总被引:4,自引:1,他引:3       下载免费PDF全文
1. The kinetic mechanism of formate dehydrogenase is a sequential pathway. 2. The binding of the substrates proceeds in an obligatory order, NAD(+) binding first, followed by formate. 3. It seems most likely that the interconversion of the central ternary complex is extremely rapid, and that the rate-limiting step is the formation or possible isomerization of the enzyme-coenzyme complexes. 4. The secondary plots of the inhibitions with HCO(3) (-) and NO(3) (-) are non-linear, which suggests that more than one molecule of each species is able to bind to the same enzyme form. 5. The rate of the reverse reaction with carbon dioxide at pH6.0 is 20 times that with bicarbonate at pH8.0, although no product inhibition could be detected with carbon dioxide. The low rate of the reverse reaction precluded any steady-state analysis as the enzyme concentrations needed to obtain a measurable rate are of the same order as the K(m) values for NAD(+) and NADH.  相似文献   

5.
During the reaction of oxyhemoglobin (HbO2) with nitrite, the concentration of residual nitrite, nitrate, oxygen, and methemoglobin (Hb+) was determined successively. The results obtained at various pH values indicate the following stoichiometry for the overall reaction: 4HbO2 + 4NO2- 4H+ leads to 4Hb+ + 4NO3- + O2 + 2H2 O (Hb denotes hemoglobin monomer). NO2- binds with methemoglobin noncooperatively with a binding constant of 340 M-1 at pH 7.4 and 25 degrees C. Thus, the major part of Hb+ produced is aquomethemoglobin, not methemoglobin nitrite, when less than 2 equivalents of nitrite is used for the oxidation.  相似文献   

6.
Elucidating the reaction of nitric oxide (NO) with oxyhemoglobin [HbFe(II)O2] is critical to understanding the metabolic fate of NO in the vasculature. At low concentrations of NO, methemoglobin [HbFe(III)] is the only detectable product from this reaction; however, locally high concentrations of NO have been demonstrated to result in some iron-nitrosylhemoglobin [HbFe(II)NO] and S-nitrosohemoglobin (SNO-Hb) formation. Reductive nitrosylation through a HbFe(III) intermediate was proposed as a viable pathway under such conditions. Here, we explore another potential mechanism based on mixed valenced Hb tetramers. The oxidation of one or two heme Fe(II) in the R-state HbFe(II)O2 has been observed to lower the oxygen affinity of the remaining heme groups, thus creating the possibility of oxygen release and NO binding at the heme Fe(II) sites. This mixed valenced hypothesis requires an allosteric transition of the Hb tetramer. Hence, this hypothesis can account for HbFe(II)NO formation, but not SNO-Hb formation. Here, we demonstrate that cyanide attenuated the formation of SNO-Hb by 30-40% when a saturated NO bolus was added to 0.1-1.0 mM HbFe(II)O2 solutions. In addition, HbFe(II)NO formation under such inhomogeneous conditions does not require allostericity. Therefore, we concluded that the mixed valenced theory does not play a major role under these conditions, and reductive nitrosylation accounts for a significant fraction of the HbFe(II)NO formed and approximately 30-40% of SNO-Hb. The remaining SNO-Hb is likely formed from NO oxidation products.  相似文献   

7.
BACKGROUND: Class 1 haemoglobins (Hbs) are induced in plant cells under hypoxic conditions. They have a high affinity for oxygen, which is two orders of magnitude lower than that of cytochrome oxidase, permitting the utilization of oxygen by the molecule at extremely low oxygen concentrations. Their presence reduces the levels of nitric oxide (NO) that is produced from nitrate ion during hypoxia and improves the redox and energy status of the hypoxic cell. SCOPE: The mechanism by which Hb interacts with NO under hypoxic conditions in plants is examined, and the effects of Hb expression on metabolism and signal transduction are discussed. CONCLUSIONS: The accumulated evidence suggests that a metabolic pathway involving NO and Hb provides an alternative type of respiration to mitochondrial electron transport under limited oxygen. Hb in hypoxic plants acts as part of a soluble, terminal, NO dioxygenase system, yielding nitrate ion from the reaction of oxyHb with NO. NO is mainly formed due to anaerobic accumulation of nitrite. The overall reaction sequence, referred to as the Hb/NO cycle, consumes NADH and maintains ATP levels via an as yet unknown mechanism. Hb gene expression appears to influence signal transduction pathways, possibly through its effect on NO, as evidenced by phenotypic changes in normoxic Hb-varying transgenic plants. Ethylene levels are elevated when Hb gene expression is suppressed, which could be a factor leading to root aerenchyma formation during hypoxic stress.  相似文献   

8.
Recent studies have suggested that nitric oxide (NO) binding to hemoglobin (Hb) may lead to the inhibition of sickle cell fiber formation and the dissolution of sickle cell fibers. NO can react with Hb in at least 3 ways: 1) formation of Hb(II)NO, 2) formation of methemoglobin, and 3) formation of S-nitrosohemoglobin, through nitrosylation of the beta93 Cys residue. In this study, the role of beta93 Cys in the mechanism of sickle cell fiber inhibition is investigated through chemical modification with N-ethylmaleimide. UV resonance Raman, FT-IR and electrospray ionization mass spectroscopic methods in conjunction with equilibrium solubility and kinetic studies are used to characterize the effect of beta93 Cys modification on Hb S fiber formation. Both FT-IR spectroscopy and electrospray mass spectrometry results demonstrate that modification can occur at both the beta93 and alpha104 Cys residues under relatively mild reaction conditions. Equilibrium solubility measurements reveal that singly-modified Hb at the beta93 position leads to increased amounts of fiber formation relative to unmodified or doubly-modified Hb S. Kinetic studies confirm that modification of only the beta93 residue leads to a faster onset of polymerization. UV resonance Raman results indicate that modification of the alpha104 residue in addition to the beta93 residue significantly perturbs the alpha(1)beta(2) interface, while modification of only beta93 does not. These results in conjunction with the equilibrium solubility and kinetic measurements are suggestive that modification of the alpha104 Cys residue and not the beta93 Cys residue leads to T-state destabilization and inhibition of fiber formation. These findings have implications for understanding the mechanism of NO binding to Hb and NO inhibition of Hb S fiber formation.  相似文献   

9.
Hypoxic vasodilation involves detection of the oxygen content of blood by a sensor, which rapidly transduces this signal into vasodilatory bioactivity. Current perspectives on the molecular mechanism of this function hold that hemoglobin (Hb) operates as both oxygen sensor and a condition-responsive NO reactor that regulates the dispensing of bioactivity through release of the NO group from the beta-cys93 S-nitroso derivative of Hb, SNO-Hb. A common path to the formation of SNO-Hb involves oxidative transfer of the NO-group from heme to thiol. We have previously reported that the reaction of nitrite with deoxy-Hb, which furnishes heme-Fe(II)NO, represents one attractive route for the formation of SNO-Hb. Recent literature, however, posits that the nitrite-reductase reaction of Hb might produce physiological vasodilatory effects through NO that evades trapping on heme-Fe(II) and may be stored before release as Fe(III)NO. In this article, we briefly review current perspectives in NO biology on the nitrite-reductase reaction of Hb. We report in vitro spectroscopic (UV/Vis, EPR) studies that are difficult to reconcile with suggestions that this reaction either generates a heme-Fe(III)NO reservoir or significantly liberates NO. We further show in bioassay experiments that combinations of nitrite and deoxy-Hb--under conditions that suppress SNO-Hb formation--exhibit no direct vasodilatory activity. These results help underscore the differences between physiological, RBC-regulated, hypoxic vasodilation versus pharmacological effects of exogenous nitrite.  相似文献   

10.
A spectrophotometric method has been developed that uses extracellular hemoglobin (Hb) to trap nitric oxide (NO) released during denitrification as nitrosyl hemoglobin (HbNO). The rate of complexation of NO with Hb is about at the diffusion controlled limit for protein molecules and the product, HbNO, is essentially stable. Hb was added to an anaerobic bacterial suspension and denitrification was initiated with either KNO2 or KNO3. HbNO formation was observed for six species of denitrifying bacteria and showed isosbestic points at 544, 568, and 586 nm. Cellular NO production, presumably by nitrite reductase, was kinetically distinct from the much slower chemical reaction of Hb with KNO2 to form methemoglobin and HbNO. The rate of HbNO formation was proportional to cell density, essentially independent of pH from 6.8 to 7.4, nearly zero order in [Hb] and, at least with Paracoccus denitrificans, strongly inhibited by rotenone and antimycin A. The Cu chelator, diethyldithiocarbamate, had no effect on HbNO formation by Pa. denitrificans, but abolished that by Achromobacter cycloclastes which uses a Cu-containing nitrite reductase known to be inactivated by the chelator. HbNO formation did not occur with non-denitrifying bacteria. The stoichiometry at high [Hb] for conversion of Hb to HbNO was 1.3-1.8 KNO2 per Hb for Pa. denitrificans, Pseudomonas aeruginosa, and A. cycloclastes and about 3.4 for Pseudomonas stutzeri. The former range of values corresponds to a partition of about 2 N atoms in 3 toward trapping and 1 in 3 toward reduction on the pathway to N2. Nitrogen not trapped appeared largely as N2O in presence of acetylene. The results are consistent with a model in which NO is a freely diffusible intermediate between nitrite and N2O, providing that nitric oxide reductase is or nearly is a diffusion controlled enzyme.  相似文献   

11.
Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock   总被引:10,自引:0,他引:10  
The current perspective of NO biology is formulated predominantly from studies of NO synthesis. The role of S-nitrosothiol (SNO) formation and turnover in governing NO-related bioactivity remains uncertain. We generated mice with a targeted gene deletion of S-nitrosoglutathione reductase (GSNOR), and show that they exhibit substantial increases in whole-cell S-nitrosylation, tissue damage, and mortality following endotoxic or bacterial challenge. Further, GSNOR(-/-) mice have increased basal levels of SNOs in red blood cells and are hypotensive under anesthesia. Thus, SNOs regulate innate immune and vascular function, and are cleared actively to ameliorate nitrosative stress. Nitrosylation of cysteine thiols is a critical mechanism of NO function in both health and disease.  相似文献   

12.
A critical element in the ability of endothelial NO to function in the vasculature is preventing its reaction with erythrocytic Hb (haemoglobin). Emerging concepts suggest that the biophysical and rheological properties of the red blood cell are important in meeting this criterion. It has been recognized for some time that cell-free Hb may react with endothelial NO and that this may underlie the problems with Hb-based blood substitutes. More recent data extend these concepts to haemolytic diseases, including sickle cell disease, and have also identified novel therapeutic strategies to prevent interactions of cell-free Hb with NO. In this overview we have hypothesized that production of high concentrations of NO can overcome the diffusional barriers presented by the red cell and result in formation of S-nitrosohaemoglobin. By doing so, it is hypothesized that Hb may mediate the vasodilatory potential of NO and contribute to the hypotensive responses observed in acute inflammatory diseases, including sepsis.  相似文献   

13.
Human saliva contains nitrate that is converted into nitrite by the activity of facultative, anaerobic bacteria of the oral cavity. Nitrite can be reduced to NO in the acidic gastric milieu; some NO may also form in the mouth at acidic pH values. In this paper, we show that bacteria ( S. salivarius, S. mitis and S. bovis ) isolated from saliva, may contribute to NO production in human saliva. NO formation by bacteria occurs at neutral pH values and may contribute to the antibacterial activity of saliva.  相似文献   

14.
Human saliva contains nitrate that is converted into nitrite by the activity of facultative, anaerobic bacteria of the oral cavity. Nitrite can be reduced to NO in the acidic gastric milieu; some NO may also form in the mouth at acidic pH values. In this paper, we show that bacteria ( S. salivarius , S. mitis and S. bovis ) isolated from saliva, may contribute to NO production in human saliva. NO formation by bacteria occurs at neutral pH values and may contribute to the antibacterial activity of saliva.  相似文献   

15.
Sharma VS  Pilz RB  Boss GR  Magde D 《Biochemistry》2003,42(29):8900-8908
Despite early claims that nitric oxide does not react with cobalamin under any circumstances, it is now accepted that NO has a high affinity for cobalamin in the 2+ oxidation state [Cbl(II)]. However, it is still the consensus that NO does not react with Cbl(III). We confirmed that NO coordinates to Cbl(II) at all pH values and that Cbl(III) does not react with NO at neutral pH. At low pH, however, Cbl(III) does react with NO by way of a two-step process that also reduces Cbl(III) to Cbl(II). To account for the pH dependence, and because of its intrinsic interest, we also studied reactions of NO with cobinamide [Cbi] in the 2+ and 3+ oxidation states. Both Cbi(II) and Cbi(III) react readily with NO at all pH values. Again, Cbi(III) is reduced during the process of coordinating NO. Compared to cobalamin, cobinamide lacks the tethered 5,6-dimethylbenzamidazolyl moiety bound to the cobalt ion. It may, therefore, be considered a "base-off" form of Cbl. To explain the reaction of Cbl(III) at low pH, we infer that the base-off form of Cbl(III) exists in trace amounts that are rapidly reduced to Cbl(II), which then binds NO efficiently. Base dissociation, we postulate, is the rate-limiting step. Interestingly, Cbi(II) has 100 times greater affinity for NO than does Cbl(II), proving that there is a strong trans effect due to the tethered base in nitrosyl derivatives of both Cbl(II) and Cbl(III). The affinity of Cbi(II) for NO is so high that it is a very efficient NO trap and, consequently, may have important biomedical uses.  相似文献   

16.
In sickle cell disease, the changes in RBC morphology destabilize the red blood cell (RBC) membrane and lead to hemolysis. Several experimental and clinical studies have associated intravascular hemolysis with pulmonary hypertension in sickle cell disease. Cell-free hemoglobin (Hb) from intravascular hemolysis has high affinity for nitrixc oxide (NO) and can affect the NO bioavailability in the sickle cell disease, which may eventually lead to pulmonary hypertension. To study the effects of intravascular hemolysis related cell-free Hb concentrations on NO bioavailability, we developed a two-dimensional mathematical model of NO biotransport in 50-μm arteriole under steady-state sickle cell disease conditions. We analyzed the effects of flow-dependent NO production and axial and radial transport of NO, a recently reported much lower NO-RBC reaction rate constant, and cell-free layer thickness on NO biotransport. Our results show that the presence of cell-free Hb concentrations as low as 0.5 μM results in an approximately three- to sevenfold reduction in the predicted smooth muscle cell NO concentrations compared with those under physiological conditions. In addition, increasing the diffusional resistance for NO in vascular lumen from cell-free layer or reducing NO-RBC reaction rate did not improve the NO bioavailability at the smooth muscle cell layer significantly for cell-free Hb concentrations ≥1 μM. These results suggest that lower NO bioavailability due to low micromolar cell-free Hb can disturb NO homeostasis and cause insufficient bioavailability at the smooth muscle cell layer. Our results supports the hypothesis that hemolysis-associated reduction in NO bioavailability may play a role in the development of pathophysiological complications like pulmonary hypertension in sickle cell disease that are observed in several clinical and experimental studies.  相似文献   

17.
The bimolecular and geminate CO recombination kinetics have been measured for hemoglobin (Hb) with over 90% of the ligand binding sites occupied by NO. Since Hb(NO)4 with inositol hexaphosphate (IHP) at pH below 7 is thought to take on the low affinity (deoxy) conformation, the goal of the experiments was to determine whether the species IHPHb-(NO)3(CO) also exists in this quaternary structure, which would allow ligand binding studies to tetramers in the deoxy conformation. For samples at pH 6.6 in the presence of IHP, the bimolecular kinetics show only a slow phase with rate 7 x 10(4) M-1 s-1, characteristic of CO binding to deoxy Hb, indicating that the triply NO tetramers are in the deoxy conformation. Unlike Hb(CO)4, the fraction recombination occurring during the geminate phase is low (< 1%) in aqueous solutions, suggesting that the IHPHb(NO)3(CO) hybrid is also essentially in the deoxy conformation. By mixing stock solutions of HbCO and HbNO, the initial exchange of dimers produces asymmetric (alpha NO beta NO/alpha CO beta CO) hybrids. At low pH in the presence of IHP, this hybrid also displays a high bimolecular quantum yield and a large fraction of slow (deoxy-like) CO recombination; the slow bimolecular kinetics show components of equal amplitude with rates 7 and 20 x 10(4) M-1 s-1, probably reflecting the differences in the alpha and beta chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The NH(4)(+) and NO(3)(-) uptake kinetics by Typha latifolia L. were studied after prolonged hydroponics growth at constant pH 3.5, 5.0, 6.5 or 7.0 and with NH(4)(+) or NO(3)(-) as the sole N-source. In addition, the effects of pH and N source on H(+) extrusion and adenine nucleotide content were examined. Typha latifolia was able to grow with both N sources at near neutral pH levels, but the plants had higher relative growth rates, higher tissue concentrations of the major nutrients, higher contents of adenine nucleotides, and higher affinity for uptake of inorganic nitrogen when grown on NH(4)(+). Growth almost completely stopped at pH 3.5, irrespective of N source, probably as a consequence of pH effects on plasma membrane integrity and H(+) influx into the root cells. Tissue concentrations of the major nutrients and adenine nucleotides were severely reduced at low pH, and the uptake capacity for inorganic nitrogen was low, and more so for NO(3)(-)-fed than for NH(4)(+)-fed plants. The maximum uptake rate, V(max), was highest for NH(4)(+) at pH 6.5 (30.9 micro mol h(-1) g(-1) root dry weight) and for NO(3)(-) at pH 5.0 (31.7 micro mol h(-1) g(-1) root dry weight), and less than 10% of these values at pH 3.5. The affinity for uptake as estimated by the half saturation constant, K((1/2)), was lowest at low pH for NH(4)(+) and at high pH for NO(3)(-). The changes in V(max) and K((1/2)) were thus consistent with the theory of increasing competition between cations and H(+) at low pH and between anions and OH(-) at high pH. C(min) was independent of pH, but slightly higher for NO(3)(-) than for NH(4)(+) (C(min)(NH(4)(+)) approximately 0.8 mmol m(-3); C(min)(NO(3)(-)) approximately 2.8 mmol m(-3)). The growth inhibition at low pH was probably due to a reduced nutrient uptake and a consequential limitation of growth by nutrient stress. Typha latifolia seems to be well adapted to growth in wetland soils where NH(4)(+) is the prevailing nitrogen compound, but very low pH levels around the roots are very stressful for the plant. The common occurrence of T. latifolia in very acidic areas is probably only possible because of the plant's ability to modify pH-conditions in the rhizosphere.  相似文献   

19.
The reaction of *NO and NO2- with hemoglobin (Hb) is of pivotal importance to blood vessel function. Both species show at least two different reactions with Fe2+ Hb: one with deoxygenated Hb, in which the biological properties of *NO are preserved, and another with oxygenated hemoglobin (oxyHb), in which both species are oxidizes to NO3-. In this study we compared the oxidative reactions of *NO and NO2- and, in particular, the radical intermediates formed during transformation to NO3-. The reaction of NO2- with oxyHb was accelerated at high heme concentrations and produced stoichiometric amounts of NO3-. Direct EPR and spin trapping studies showed that NO2-, but not *NO, induced the formation of globin Tyr-, Trp-, and Cys-centered radicals. MS studies provided evidence of the formation of approximately 2% nitrotyrosine in both the alpha and beta subunits, suggesting that *NO2 diffuses in part away from the heme and reacts with Tyr radicals. No nitrotyrosines were detected in the reaction of *NO with oxyHb. Collectively, these results indicate that NO2- reaction with oxyHb causes an oxidative challenge not observed with *NO. The differences in oxidation mechanisms of *NO and NO2- are discussed.  相似文献   

20.
Factors which govern transnitrosation reactions between hemoglobin (Hb) and low molecular weight thiols may define the extent to which S-nitrosated Hb (SNO-Hb) plays a role in NO in the control of blood pressure and other NO-dependent reactions. We show that exposure to S-nitrosylated cysteine (CysNO) produces equivalent levels of SNO-Hb for Hb A(0) and sickle cell Hb (Hb S), although these proteins differ significantly in the electron affinity of their heme groups as measured by their anaerobic redox potentials. Dolphin Hb, a cooperative Hb with a redox potential like that of Hb S, produces less SNO-Hb, indicating that steric considerations outweigh effects of altered electron affinity at the active-site heme groups in control of SNO-Hb formation. Examination of oxygen binding at 5-20 mM heme concentrations revealed increases due to S-nitrosation in the apparent oxygen affinity of both Hb A(0) and Hb S, similar to increases seen at lower heme concentrations. As observed at lower heme levels, deoxygenation is not sufficient to trigger release of NO from SNO-Hb. A sharp increase in apparent oxygen affinity occurs for unmodified Hb S at concentrations above 12.5 mM, its minimum gelling concentration. This affinity increase still occurs in 30 and 60% S-nitrosated samples, but at higher heme concentration. This oxygen binding behavior is accompanied by decreased gel formation of the deoxygenated protein. S-nitrosation is thus shown to have an effect similar to that reported for other SH-group modifications of Hb S, in which R-state stabilization opposes Hb S aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号