首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac sympathetic transmitter stores are reduced in the failing heart. In this study, we proposed to investigate whether the reduction of cardiac sympathetic neurotransmitters was associated with increased interstitial norepinephrine (NE) and reactive oxygen species in congestive heart failure (CHF), using a microdialysis technique and salicylate to detect .OH generation. Rabbits with and without rapid ventricular pacing (340 beats/min) were randomized to receive desipramine (10 mg/day) or placebo for 8 wk. Rapid pacing produced left ventricular dilation and systolic dysfunction. The failing myocardium also showed reduced tissue contents of NE and tyrosine hydroxylase protein and activity. In contrast, myocardial interstitial NE was increased in CHF (0.89 +/- 0.11 ng/ml) compared with the sham-operated animals (0.26 +/- 0.03 ng/ml). In addition, cardiac oxidative stress was increased in CHF animals as measured by myocardial interstitial .OH radical, tissue oxidized glutathione, and oxidized mitochondrial DNA. Desipramine treatment produced significant NE uptake inhibition as evidence by an exaggerated pressor response and a greater increase of myocardial interstitial NE in response to intravenous NE infusion but no significant effects on cardiac function or hemodynamics in sham-operated or CHF animals. However, desipramine treatment attenuated the reductions of tissue NE and tyrosine hydroxylase protein and activity in CHF. Desipramine also prevented the reduction of tyrosine hydroxylase produced by NE in PC12 cells. Thus the reduction of cardiac sympathetic neurotransmitters is related to the increased interstitial NE and tissue oxidative stress in CHF. Also, normal neuronal uptake of NE is required for NE or its oxidized metabolites to exert their neurotoxic effects.  相似文献   

2.
We examined the effects of gender and aging on cardiac and peripheral hemodynamic responses to beta-adrenergic receptor (beta-AR) stimulation in young (male = 5.9 +/- 0.4 yr old and female = 6.5 +/- 0.7 yr old) and old (male = 19.8 +/- 0.7 yr old and female = 21.2 +/- 0.2 yr old) conscious monkeys (Macaca fascicularis), chronically instrumented for measurements of left ventricular (LV) and arterial pressures as well as cardiac output. Baseline LV pressure, the first derivative of LV pressure (LV dP/dt), cardiac index, mean arterial pressure, total peripheral resistance (TPR), and heart rate in conscious monkeys were not different among the four groups. Increases in LV dP/dt in response to 0.1 microg/kg isoproterenol (Iso) were diminished (P < 0.05) in old males (+99 +/- 11%) compared with young males (+194 +/- 18%). In addition, the inotropic responses to norepinephrine (NE) and forskolin (FSK) were significantly depressed (P < 0.05) in old males. Iso-induced reductions of TPR were less (P < 0.05) in old males (-28 +/- 2%) than in young males (-49 +/- 2%). The changes of TPR in response to NE and FSK were also significantly attenuated (P < 0.05) in old males. However, the LV dP/dt responses to BAY y 5959 (15 microg. kg-1. min-1), a Ca2+ channel promotor independent of beta-AR signaling, were not significantly different between old and young males. In contrast to results in male monkeys, LV dP/dt and TPR responses to Iso, NE, and FSK in old females were similar to those observed in young females. Thus both cardiac contractile and peripheral vascular dynamic responses to beta-AR stimulation are preserved in old female but not old male monkeys. This may explain, in part, the reduced cardiovascular risk in the older female population.  相似文献   

3.
Elevated QT interval variability is a predictor of malignant ventricular arrhythmia, but the underlying mechanisms are incompletely understood. A recent study in dogs with pacing-induced heart failure suggests that QT variability is linked to cardiac sympathetic nerve activity. The aim of this study was to determine whether increased cardiac sympathetic activity is associated with increased beat-to-beat QT interval variability in patients with essential hypertension. We recorded resting norepinephrine (NE) spillover into the coronary sinus and single-lead, short-term, high-resolution, body-surface ECG in 23 patients with essential hypertension and 9 normotensive control subjects. To assess beat-to-beat QT interval variability, we calculated the overall QT variability (QTVN) as well as the QT variability index (QTVi). Cardiac NE spillover (12.2 ± 6.5 vs. 20.7 ± 14.7, P = 0.03) and QTVi (-1.75 ± 0.36 vs. -1.42 ± 0.50, P = 0.05) were significantly increased in hypertensive patients compared with normotensive subjects. QTVN was significantly correlated with cardiac NE spillover (r(2) = 0.31, P = 0.001), with RR variability (r(2) = 0.20, P = 0.008), and with systolic blood pressure (r(2) = 0.16, P = 0.02). Linear regression analysis identified the former two as independent predictors of QTVN. In conclusion, elevated repolarization lability is directly associated with sympathetic cardiac activation in patients with essential hypertension.  相似文献   

4.
Because of similar physiological changes such as increased left ventricular (LV) afterload and sympathetic tone, an exaggerated depression in cardiac output (CO) could be expected in patients with coexisting obstructive sleep apnea and congestive heart failure (CHF). To determine cardiovascular effects and mechanisms of periodic obstructive apnea in the presence of CHF, 11 sedated and chronically instrumented pigs with CHF (rapid pacing) were tested with upper airway occlusion under room air breathing (RA), O(2) breathing (O2), and room air breathing after hexamethonium (Hex). All conditions led to large negative swings in intrathoracic pressure (-30 to -39 Torr) and hypercapnia (PCO(2) approximately 60 Torr), and RA and Hex also caused hypoxia (to approximately 42 Torr). Relative to baseline, RA increased mean arterial pressure (from 97.5 +/- 5.0 to 107.3 +/- 5.7 Torr, P < 0.01), systemic vascular resistance, LV end-diastolic pressure, and LV end-systolic length while it decreased CO (from 2.17 +/- 0.27 to 1.52 +/- 0.31 l/min, P < 0.01), stroke volume (SV; from 23.5 +/- 2.4 to 16.0 +/- 4.0 ml, P < 0.01), and LV end-diastolic length (LVEDL). O2 and Hex decreased mean arterial pressure [from 102.3 +/- 4.1 to 16.0 +/- 4.0 Torr (P < 0.01) with O2 and from 86.0 +/- 8.5 to 78.1 +/- 8.7 Torr (P < 0.05) with Hex] and blunted the reduction in CO [from 2.09 +/- 0.15 to 1.78 +/- 0.18 l/ml for O2 and from 2.91 +/- 0.43 to 2.50 +/- 0.35 l/ml for Hex (both P < 0.05)] and SV. However, the reduction in LVEDL and LV end-diastolic pressure was the same as with RA. There was no change in systemic vascular resistance and LVEDL during O2 and Hex relative to baseline. In the CHF pigs during apnea, there was an exaggerated reduction in CO and SV relative to our previously published data from normal sedated pigs under similar conditions. The primary difference between CHF (present study) and the normal animals is that, in addition to increased LV afterload, there was a decrease in LV preload in CHF contributing to SV depression not seen in normal animals. The decrease in LV preload during apneas in CHF may be related to effects of ventricular interdependence.  相似文献   

5.
The objective of the present study was to test the hypothesis that endogenous beta(3)-adrenoreceptor (AR) activation contributes to left ventricular (LV) and cardiomyocyte dysfunction in heart failure (CHF). Stimulation of the beta(3)-AR inhibits cardiac contraction. In the failing myocardium, beta(3)-ARs are upregulated, suggesting that stimulation of beta(3)-ARs may contribute to depressed cardiac performance in CHF. We assessed the functional significance of endogenous beta(3)-AR activation in 10 conscious dogs before and after pacing-induced CHF. Under normal conditions, L-748,337, a specific beta(3)-AR antagonist, produced a mild increase in LV contractile performance assessed by the slope (E(es)) of the LV pressure-volume relation (18%, 6.2 +/- 0.9 vs. 7.3 +/- 1.2 mmHg/ml, P < 0.05) and the improved LV relaxation time constant (tau; 28.4 +/- 1.9 vs. 26.8 +/- 1.0 ms, P < 0.05). After CHF, the plasma norepinephrine concentration increased eightfold, and L-748,337 produced a larger increase in E(es) (34%, 3.8 +/- 0.7 vs. 5.1 +/- 0.8 mmHg/ml, P < 0.05) and a greater decrease in tau (46.4 +/- 4.2 vs. 41.0 +/- 3.9 ms, P < 0.05). Similar responses were observed in isolated myocytes harvested from LV biopsies before and after CHF. In the normal myocyte, L-748,337 did not cause significant changes in contraction or relengthening. In contrast, in CHF myocytes, L-748,337 produced significant increases in contraction (5.8 +/- 0.9 vs. 6.8 +/- 0.9%, P < 0.05) and relengthening (33.5 +/- 4.2 vs. 39.7 +/- 4.0 microm/s, P < 0.05). The L-748,337-induced myocyte response was associated with improved intracellular Ca(2+) concentration regulation. In CHF myocytes, nadolol caused a decrease in contraction and relengthening, and adding isoproterenol to nadolol caused a further depression of myocyte function. Stimulation of beta(3)-AR by endogenous catecholamine contributes to the depression of LV contraction and relaxation in CHF.  相似文献   

6.
目的:慢性心力衰竭(CHF)患者终末期阶段常发生左室(LV)重塑和心脏性恶病质,有研究称Ghrelin可能对CHFLV功能和能量代谢产生保护作用。本文旨在探讨Ghrelin对CHF大鼠LV功能紊乱和心源性恶病质的作用。方法:建立左冠状动脉结扎术和假手术组,手术后4周,给予大鼠Ghrelin或生理盐水3周。用超声心动图和心脏导管术监测结果。结果:与给予安慰剂组相比,用Ghrelin治疗的CHF和假手术组,血浆GH和胰岛素样生长因子1明显升高(t=1.49,t=0.71,P0.05)。与Sham-Placebo组相比,CHF-Placebo组大鼠体重明显减轻(t=2.18,P0.05)。然而与CHF-Placebo组相比,CHF-Ghrelin组大鼠,体重(t=3.89,P0.05),心输出量(t=3.28,P0.05),LV dP/dtmax(t=3.90,P0.05)明显增加。Ghrelin增加了CHF大鼠心脏舒张压,抑制LV扩大,增加LV缩短分数。结论:长期注射Ghrelin可改善CHF大鼠LV功能紊乱,减缓LV重构和心脏性恶病质的发展,有望为CHF的治疗提供新的途径和方法。  相似文献   

7.
Elderly female hypertensives with arterial stiffening constitute a majority of patients with heart failure with preserved ejection fraction (HFpEF), a condition characterized by inability to increase cardiac stroke volume (SV) with physical exercise. As SV is determined by the interaction between the left ventricle (LV) and its load, we wished to study the role of arterial hemodynamics for exertional SV reserve in patients at high risk of HFpEF. Twenty-one elderly (67 ± 9 yr) female hypertensive patients were studied at rest and during supine bicycle stress using echocardiography including pulsed-wave Doppler to record flow in the LV outflow tract and arterial tonometry for central arterial pressure waveforms. Arterial compliance was estimated based on an exponential relationship between pressure and volume. The ratio of aortic pressure-to-flow in early systole was used to derive characteristic impedance, which was subsequently subtracted from total resistance (mean arterial pressure/cardiac output) to yield systemic vascular resistance (SVR). It was found that patients with depressed SV reserve (NoRes; reserve <15%; n = 10) showed decreased arterial compliance during exercise, while patients with SV reserve ≥15% (Res; n = 11) showed increased compliance. Exercise produced parallel increases in LV end-diastolic volume and arterial volume in Res patients while NoRes patients exhibited a lesser decrease in SVR and a drop in effective arterial volume. Poor SV reserve in elderly female hypertensives is due to simultaneous failure of LV preload and arterial vasodilatory reserves. Abnormal arterial function contributes to a high risk of HFpEF in these patients.  相似文献   

8.
Objectives of this study were to develop a technique for quantifying cardiac-specific norepinephrine (NE) mass transport and determine whether cardiac NE kinetic modeling parameters were related to physiological variables of left ventricular (LV) size and systolic performance in nine patients with chronic mitral regurgitation. Biplane contrast cineventriculograms were used to determine LV size and ejection fraction (EF), micromanometer LV pressures and radionuclide LV volumes from a range of loading conditions to calculate LV end-systolic elastance, and [(3)H]NE infusions with LV and coronary sinus sampling for [(3)H]NE and endogenous NE during and after termination of infusions to model NE mass transport. Total NE release rate into cardiac interstitial fluid (M(IF)(R)) averaged 859 +/- 214 and NE released de novo into cardiac interstitial fluid (M(IF)(u,r,en)) averaged 546 +/- 174 pmol/min. Both M(IF)(R) and M(IF)(u,r,en)correlated directly with LV end-systolic volume (r = 0.84, P = 0.005; r = 0.86, P = 0.003); inversely with LV EFs (r = -0.75, P = 0.02; r = -0.81, P = 0.008); and inversely with LV end-systolic elastance values, optimally fit by a nonlinear function (r = 0.89, P = 0.04; r = 0.96, P = 0.01). We conclude that total and newly released NE into interstitial fluid of the heart, determined by regional mass transport kinetic model, are specific measures of regional cardiac-specific sympathetic nervous system activity and are strongly related to measures of LV size and systolic performance. These data support the concept that this new model of organ-specific NE kinetics has physiological relevance.  相似文献   

9.
Chronic heart failure (CHF) is well known to be associated with both an enhanced chemoreceptor reflex and an augmented cardiac "sympathetic afferent reflex" (CSAR). The augmentation of the CSAR may play an important role in the enhanced chemoreceptor reflex in the CHF state because the same central areas are involved in the sympathetic outputs of both reflexes. We determined whether chemical and electrical stimulation of the CSAR augments chemoreceptor reflex function in normal rats. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The chemoreceptor reflex was tested by unilateral intra-carotid artery bolus injection of potassium cyanide (KCN) and nicotine. We found that 1) left ventricular epicardial application of capsaicin increased the pressor responses and the RSNA responses to chemoreflex activation induced by both KCN and nicotine; 2) when the central end of the left cardiac sympathetic nerve was electrically stimulated, both the pressor and the RSNA responses to chemoreflex activation induced by KCN were increased; 3) pretreatment with intracerebroventricular injection of losartan (500 nmol) completely prevented the enhanced chemoreceptor reflex induced by electrical stimulation of the cardiac sympathetic nerve; and 4) bilateral microinjection of losartan (250 pmol) into the nucleus tractus solitarii (NTS) completely abolished the enhanced chemoreceptor reflex by epicardial application of capsaicin. These results suggest that both the chemical and electrical stimulation of the CSAR augments chemoreceptor reflex and that central ANG II, specially located in the NTS, plays a major role in these reflex interactions.  相似文献   

10.
Mitral regurgitation (MR) is associated with increased neuronal release of norepinephrine (NE) and epinephrine (EP) into myocardial interstitial fluid (ISF) that may be necessary in sustaining left ventricular (LV) function via activation of cardiomyocyte beta-adrenergic receptors (ARs). However, activation of neuronal beta-ARs on cardiac neurons may lead to further catecholamine release, with an attendant risk of functional deterioration. We hypothesize that a beneficial effect of beta-AR blockade may therefore mitigate excessive catecholamine release from cardiac adrenergic neurons in dogs with MR. We measured the effects of chronic beta-receptor blockade (beta-RB) on ISF NE and EP release using in vivo microdialysis in open-chest anesthetized dogs after 4 wk of MR with or without extended release of metoprolol succinate (100 mg/day) as well as in control dogs. Fractional shortening increased by 30% in both MR and MR + beta-RB dogs after 4 wk of MR. In MR + beta-RB dogs, stellate-stimulated heart rate change was attenuated compared with control and MR dogs, whereas peak change of LV pressure over time (+dP/dt) increased equally in all groups. Stellate-stimulated ISF NE increased fivefold over baseline in MR versus twofold in control dogs (< 0.05), but the NE release was significantly attenuated in MR + beta-RB dogs. In contrast, stellate-stimulated increases in ISF EP did not differ in control, MR, and MR + beta-RB dogs. This study demonstrates that beta-RB attenuates ISF NE release from cardiac neurons and that the LV functional response to MR is not dependent on an excess increase in ISF NE. Thus beta1-RB may exert a beneficial effect by attenuating untoward effects of excessive sympathetic efferent neural NE release while sustaining early LV functional adaptation to MR.  相似文献   

11.
Central and peripheral noradrenergic tone in primary hypertension   总被引:1,自引:0,他引:1  
The contents of norepinephrine (NE), epinephrine (E), dopamine (DA), normetanephrine (NMN), and 4-hydroxy-3-methoxyphenylethylene glycol (MHPG) were measured in the plasma and cerebrospinal fluid (CSF) of 66 patients with primary hypertension and 24 patients with normal blood pressure and minor neurological disorders. Plasma and CSF NE and NMN concentrations were raised in the hypertensive patients. The plasma and CSF NE levels and arterial blood pressure of a small subset of hypertensive patients were normalized after clonidine therapy. In hypertensive patients the content of DA was lower and the ratio of NE/DA was greater; CSF and plasma NE contents were related to the level of arterial blood pressure; and the content of MHPG in CSF was linked strongly with NE content in plasma and CSF and to the level of arterial blood pressure. Thus both central sympathetic nerve tone and peripheral sympathetic nerve tone were enhanced in young patients with uncomplicated hypertension. The elevated levels of neurohormones and their metabolites in some patients with primary hypertension may be related to increased synthesis and release of neural NE and may be pathogenic in the blood pressure elevation.  相似文献   

12.
We hypothesized that performanceof exercise during heart failure (HF) would lead to hypoperfusion ofactive skeletal muscles, causing sympathoactivation at lower workloadsand alteration of the normal hemodynamic and hormonal responses. Wemeasured cardiac output, mean aortic and right atrial pressures,hindlimb and renal blood flow (RBF), arterial plasma norepinephrine(NE), plasma renin activity (PRA), and plasma arginine vasopressin(AVP) in seven dogs during graded treadmill exercises and at rest. Incontrol experiments, sympathetic activation at the higher workloadsresulted in increased cardiac performance that matched the increasedmuscle vascular conductance. There were also increases in NE, PRA, and AVP. Renal vascular conductance decreased during exercise, such thatRBF remained at resting levels. After control experiments, HF wasinduced by rapid ventricular pacing, and the exercise protocols wererepeated. At rest in HF, cardiac performance was significantly depressed and caused lower mean arterial pressure, despite increased HR. Neurohumoral activation was evidenced by renal and hindlimb vasoconstriction and by elevated NE, PRA, and AVP levels, but it didnot increase at the mildest workload. Beyond mild exercise, sympathoactivation increased, accompanied by progressive renal vasoconstriction, a fall in RBF, and very large increases of NE, PRA,and AVP. As exercise intensity increased, peripheral vasoconstriction increased, causing arterial pressure to rise to near normal levels, despite depressed cardiac output. However, combined with redirection ofRBF, this did not correct the perfusion deficit to the hindlimbs. Weconclude that, in dogs with HF, the elevated sympathetic activity observed at rest is not exacerbated by mild exercise. However, withheavier workloads, sympathoactivation begins at lower workloads andbecomes progressively exaggerated at higher workloads, thus alteringdistribution of blood flow.

  相似文献   

13.
To better understand the mechanisms contributing to improved exercise capacity with cardiac resynchronization therapy (CRT), we studied the effects of 6 mo of CRT on pulmonary O(2) uptake (Vo(2)) kinetics, exercise left ventricular (LV) function, and peak Vo(2) in 12 subjects (age: 56 ± 15 yr, peak Vo(2): 12.9 ± 3.2 ml·kg(-1)·min(-1), ejection fraction: 18 ± 3%) with heart failure. We hypothesized that CRT would speed Vo(2) kinetics due to an increase in stroke volume secondary to a reduction in LV end-systolic volume (ESV) and that the increase in peak Vo(2) would be related to an increase in cardiac output reserve. We found that Vo(2) kinetics were faster during the transition to moderate-intensity exercise after CRT (pre-CRT: 69 ± 21 s vs. post-CRT: 54 ± 17 s, P < 0.05). During moderate-intensity exercise, LV ESV reserve (exercise - resting) increased 9 ± 7 ml (vs. a 3 ± 9-ml decrease pre-CRT, P < 0.05), and steady-state stroke volume increased (pre-CRT: 42 ± 8 ml vs. post-CRT: 61 ± 12 ml, P < 0.05). LV end-diastolic volume did not change from rest to steady-state exercise post-CRT (P > 0.05). CRT improved heart rate, measured as a lower resting and steady-state exercise heart rate and as faster heart rate kinetics after CRT (pre-CRT: 89 ± 12 s vs. post-CRT: 69 ± 21 s, P < 0.05). For peak exercise, cardiac output reserve increased significantly post-CRT and was 22% higher at peak exercise post-CRT (both P < 0.05). The increase in cardiac output was due to both a significant increase in peak and reserve stroke volume and to a nonsignificant increase in heart rate reserve. Similar patterns in LV volumes as moderate-intensity exercise were observed at peak exercise. Cardiac output reserve was related to peak Vo(2) (r = 0.48, P < 0.05). These findings demonstrate the chronic CRT-mediated cardiac factors that contribute, in part, to the speeding in Vo(2) kinetics and increase in peak Vo(2) in clinically stable heart failure patients.  相似文献   

14.
Right ventricular (RV) pacing is now recognized to play a role in the development of heart failure in patients with and without underlying left ventricular (LV) dysfunction. We used the cardiac norepinephrine spillover method to test the hypothesis that RV pacing is associated with cardiac sympathetic activation. We studied 8 patients with normal LV function using temporary right atrial and ventricular pacing wires. All measurements were carried out during a fixed atrial pacing rate. The radiotracer norepinephrine spillover technique was employed to measure total body and cardiac sympathetic activity while changes in LV performance were evaluated with a high-fidelity manometer catheter. Atrioventricular synchronous RV pacing, compared with atrial pacing alone, was associated with a 65% increase in cardiac norepinephrine spillover, an increase in LV end-diastolic pressure, and a reduction in myocardial efficiency. These responses may play a role in the development of heart failure and poor outcomes that are associated with chronic RV pacing.  相似文献   

15.
Relationships between changes in levels of catechols and directly recorded sympathetic nerve activity were examined using simultaneous measurements of renal sympathetic nerve activity and arterial and renal venous concentrations of norepinephrine (NE), dihydroxyphenylalanine (dopa), and dihydroxyphenylglycol (DHPG) during reflexive alterations in renal sympathetic nerve activity in anesthetized, adrenal-demedullated rats. Nitroprusside infusion increased renal sympathetic nerve activity by 90%, arterial levels of dopa by 96%, NE by 326%, and DHPG by 141%. Phenylephrine infusion increased arterial DHPG levels by 81% and decreased renal sympathetic nerve activity by 37% and NE levels by 26%; arterial dopa levels were unchanged. Ganglionic blockade by chlorisondamine (with concomitant phenylephrine infusion to maintain MAP) decreased renal sympathetic nerve activity by 65% and NE concentrations by 37%; arterial dopa concentrations were unchanged, and DHPG concentrations increased by 60%. Proportionate responses of arterial levels of NE were strongly related to proportionate changes in renal sympathetic nerve activity. Clearance of DHPG from arterial plasma was prolonged by phenylephrine-induced hypertension and by nitroprusside-induced hypotension. The results suggest that changes in arterial NE levels reflect changes in sympathetic activity; changes in dopa levels reflect changes in catecholamine biosynthesis; and changes in DHPG levels depend on reuptake of released NE and on hemodynamic factors affecting DHPG clearance.  相似文献   

16.
The new myofilament Ca2+ sensitizer levosimendan (LSM) is a positive inotropic and vasodilatory agent. Its beneficial effects have been demonstrated at rest in congestive heart failure (CHF). However, its effect during exercise (Ex) in CHF is unknown. We assessed the effects of LSM on left ventricular (LV) dynamics at rest and during Ex in eight conscious, instrumented dogs with pacing-induced CHF. After CHF, with dogs at rest, LSM decreased arterial elastance (Ea) and increased LV contractile performance as assessed by the slope of LV pressure-volume (P-V) relation. LSM caused a >60% increase in the peak rate of mitral flow (dV/dtmax) due to decreases in minimal LV pressure and the time constant of LV relaxation (tau). LV arterial coupling, quantified as the ratio of end-systolic elastance (Ees) to Ea, was increased from 0.47 to 0.85%. LV mechanical efficiency, determined as the ratio of stroke work to total P-V area, was improved from 0.54 +/- 0.09 to 0.61 +/- 0.07. These beneficial effects persisted during Ex after CHF. Compared with CHF Ex dogs, treatment with LSM prevented Ex-induced abnormal increases in mean left atrial pressure and end-diastolic pressure and decreased Ees/Ea. With LSM treatment during CHF Ex, the early diastolic portion of the LV P-V loop was shifted downward with decreased minimal LV pressure and tau values and a further augmented dV/dtmax. Ees/Ea improved, and mechanical efficiency further increased from 0.61 +/- 0.07 to 0.67 +/- 0.07, which was close to the value reached during normal Ex. After CHF, LSM produced arterial vasodilatation; improved LV relaxation and diastolic filling; increased contractility, LV arterial coupling, and mechanical efficiency; and normalized the response to Ex.  相似文献   

17.
We have recently demonstrated that tetrahydrobiopterin (BH(4)) augments reflex vasoconstriction (VC) in aged skin. Although this appears to occur through its role in norepinephrine (NE) biosynthesis, the extent with which vascular mechanisms are affected are unknown. We hypothesized that localized BH(4) supplementation would not affect the VC response to exogenous NE when sympathetic nerves were blocked. Two microdialysis fibers were placed in bretylium tosylate pretreated (presynaptically blocks neurotransmitter release from sympathetic adrenergic nerve terminals; iontophoresis, 200 μA for 20 min) 3-cm(2) forearm skin of 10 young (Y) and 10 older (O) subjects for perfusion of 1) Ringer (control) and 2) 5 mM BH(4). While local skin temperature was clamped at 34°C, six concentrations of NE (10(-12), 10(-10), 10(-8), 10(-6), 10(-4), 10(-2) M) were infused at each drug-treated site. Cutaneous vascular conductance (CVC) was calculated (CVC = laser Doppler flux/mean arterial pressure) and normalized to baseline (%ΔCVC(base)). Despite prejunctional adrenergic blockade, NE-mediated VC was blunted in aged skin at each NE dose (10(-12): -12 ± 2 vs. -21 ± 2; 10(-10): -15 ± 2 vs. -27 ± 1; 10(-8): -22 ± 2 vs. -32 ± 2; 10(-6): -27 ± 2 vs. -38 ± 1; 10(-4): -52 ± 3 vs. -66 ± 5; 10(-2): -62 ± 3 vs. -75 ± 4%ΔCVC(base); P < 0.01), and this response was not affected by pretreatment with BH(4) (P > 0.05). Localized BH(4) did not affect end-organ responsiveness to exogenous NE, suggesting that the effects of BH(4) on cutaneous VC are primarily isolated to the NE biosynthetic pathway.  相似文献   

18.
为观察延髓头端腹外侧区(rostral ventrolateral medulla,RVLM)一氧化氮(NO)在慢性心力衰竭(chronic heartfailure,CHF)大鼠增强的心交感传入反射(cardiac sympathetic afferent reflex,CSAR)中的作用,实验在去压力感受器神经支配的结扎冠状动脉诱发的CHF大鼠和假手术SD大鼠进行,记录电刺激心交感传入神经中枢端前后的血压和肾交感神经活动(renal sympathetic nerve activity,RSNA)变化以评价CSAR.结果显示:(1)CHF大鼠的CSAR显著增强;(2)RVLM微量注射NO合酶(NOS)抑制剂MeTC增强对照组大鼠的CSAR但对CHF大鼠的CSAR无显著影响;(3)RVLM微量注射NO供体S-nitroso-N-acetyl-penicillamine(SNAP)抑制CHF大鼠增强的CSAR;(4)S-methyl-L-thiocitmline(MeTC)仅增强对照组大鼠基础水平的RSNA,而SNAP抑制对照组和CHF大鼠基础水平的RSNA.结果表明RVLM中内源性NO的减少是导致CHF大鼠CSAR增强的重要机制之.  相似文献   

19.
The sympathetic nervous system is thought to play a key role in genesis and maintenance of ventricular arrhythmias. The myocardial effect of sympathetic stimulation on myocardial repolarization in humans is poorly understood. The purpose of this study was to evaluate the effects of direct and reflex sympathetic stimulation on ventricular repolarization in patients with postinfarct cardiomyopathy (ICM). The effects of direct sympathetic stimulation were assessed using isoproterenol, while those of reflex sympathetic stimulation were assessed with nitroprusside infusion in ICM patients (n = 5). Five patients without cardiomyopathy were also studied. Local repolarization was measured from intracardiac electrograms that were used to calculate the activation recovery interval (ARI), a surrogate of action potential duration. Isoproterenol significantly increased heterogeneity in repolarization in patients with ICM; the decrease in ARI from baseline was 72.9 ± 9.1 ms in more viable regions, 64.5 ± 8.9 ms in the scar, and 54.9 ± 9.1 ms in border zones (P = 0.0002 and 0.014 comparing normal and scar to border zones, respectively). In response to nitroprusside, the ARI at the border zones decreased significantly more than either scar or surrounding viable myocardium, which showed an increase in ARI (P = 0.014 and 0.08 comparing normal tissue and scar to border zones, respectively). Furthermore, isoproterenol increased ARI dispersion by 70%, while nitroprusside increased ARI dispersion by 230% when ICM patients were compared to those with structurally normal hearts (P = 0.0015 and P < 0.001, respectively). In humans, both direct and reflex sympathetic stimulations increase regional differences in repolarization. The normal tissue surrounding the scar appears denervated. Dispersion of ARI in response to sympathetic stimulation is significantly increased in patients with ICM.  相似文献   

20.
Current rodent models of ischemia/infarct or pressure-volume overload are not fully representative of human heart failure. We developed a new model of congestive heart failure (CHF) with both ischemic and stress injuries combined with fibrosis in the remote myocardium. Sprague-Dawley male rats were used. Ascending aortic banding (Ab) was performed to induce hypertrophy. Two months post-Ab, ischemia-reperfusion (I/R) injury was induced by ligating the left anterior descending (LAD) artery for 30 min. Permanent LAD ligation served as positive controls. A debanding (DeAb) procedure was performed after Ab or Ab + I/R to restore left ventricular (LV) loading properties. Cardiac function was assessed by echocardiography and in vivo hemodynamic analysis. Myocardial infarction (MI) size and myocardial fibrosis were assessed. LV hypertrophy was observed 4 mo post-Ab; however, systolic function was preserved. LV hypertrophy regressed within 1 mo after DeAb. I/R for 2 mo induced a small to moderate MI with mild impairment of LV function. Permanent LAD ligation for 2 mo induced large MI and significant cardiac dysfunction. Ab for 2 mo followed by I/R for 2 mo (Ab + I/R) resulted in moderate MI with significantly reduced ejection fraction (EF). DeAb post Ab + I/R to reduce afterload could not restore cardiac function. Perivascular fibrosis in remote myocardium after Ab + I/R + DeAb was associated with decreased cardiac function. We conclude that Ab plus I/R injury with aortic DeAb represents a novel model of CHF with increased fibrosis in remote myocardium. This model will allow the investigation of vascular and fibrotic mechanisms in CHF characterized by low EF, dilated LV, moderate infarction, near-normal aortic diameter, and reperfused coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号