首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, the immobilization of superoxide dismutase (SOD) onto aminopropyl-functionalized KIT-6 [n-PrNH(2)-KIT-6] was investigated. This organo-functionalized mesoporous silica nanoparticle was prepared using a non-ionic surfactant and was fully characterized by XRD, nitrogen adsorption-desorption isotherm assay, IR and TGA techniques. An activity assay demonstrated that the immobilized SOD had a higher activity than the free enzyme. Further investigations using FT-IR, circular dichroism (CD), and probe 1-anilino-8-naphthalene sulfonate (ANS) fluorescence intensity measurements indicated that the structure of the enzyme did not change upon binding to the mesoporous silica, and that immobilized SOD was also less affected by higher temperatures. The melting temperatures of the free and immobilized enzymes were measured by differential scanning calorimetry (DSC), which showed that a fraction of immobilized enzyme was more stable and revealed that immobilized enzyme was partly reversible.  相似文献   

2.
This study investigated the potential use of mesoporous silica nanoparticles (MSNs) as a carrier for duloxetine hydrochloride (DX), which is prone to acid degradation. Sol–gel and solvothermal methods were used to synthesize the MSNs, which, after calcination and drug loading, were then characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) technique, thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and diffuse reflectance ultraviolet-visible (DRS-UV-Vis) spectroscopy. Releases of DX from the MSNs were good in pH 7.4 (90%) phosphate buffer but poor in acidic pH (40%). In a comparative release study between the MSNs in phosphate buffer, TW60-3DX showed sustained release for 140 h, which was higher than the other nanoparticles. The mechanism of DX release from the MSNs was studied using Peppas kinetics model. The “n” value of all three MSNs ranged from 0.45 to 1 with a correlation coefficient (r2) >0.9, which indicated that the release of the drug from the system follows the anomalous transport or non-Fickian diffusion. The results supported the efficacy of mesoporous silica nanoparticles synthesized here as a promising carrier for duloxetine hydrochloride with higher drug loading and greater pH-sensitive release.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0273-x) contains supplementary material, which is available to authorized users.KEY WORDS: controlled release, duloxetine hydrochloride, meso silica nanoparticles, sol–gel synthesis  相似文献   

3.
Enzyme immobilization in a biomimetic silica support   总被引:3,自引:0,他引:3  
Robust immobilization techniques that preserve the activity of biomolecules have many potential applications. Silicates, primarily in the form of sol-gel composites or functionalized mesoporous silica, have been used to encapsulate a wide variety of biomolecules but the harsh conditions required for chemical synthesis limit their applicability. Silaffin polypeptides from diatoms catalyze the formation of silica in vitro at neutral pH and ambient temperature and pressure. Here we show that butyrylcholinesterase entrapped during the precipitation of silica nanospheres retained all of its activity. Ninety percent of the soluble enzyme was immobilized, and the immobilized enzyme was substantially more stable than the free enzyme. The mechanical properties of silica nanospheres facilitated application in a flow-through reactor. The use of biosilica for enzyme immobilization combines the excellent support properties of a silica matrix with a benign immobilization method that retains enzyme activity.  相似文献   

4.
An electrochemical immunosensor for quantitative detection of α-fetoprotein (AFP) in human serum was developed using graphene sheets (GS) and thionine (TH) as electrode materials and mesoporous silica nanoparticles (MSNs) loaded with ferroferric oxide (Fe3O4) nanoparticles and horseradish peroxidase (HRP) as labels for signal amplification. In this study, the compound of GS and TH (GS–TH) was used as a substrate for promoting electron transfer and immobilization of primary antibody of AFP (Ab1). MSNs were used as a carrier for immobilization of secondary antibody of AFP (Ab2), Fe3O4, and HRP. The synergistic effect occurred between Fe3O4 and HRP and greatly improved the sensitivity of the immunosensor. This method could detect AFP over a wide concentration range from 0.01 to 25 ng ml−1 with a detection limit of 4 pg ml−1. This strategy may find wide potential application in clinical analysis or detection of other tumor markers.  相似文献   

5.
Mesoporous silica nanoparticles (MSN) have emerged as an attractive class of drug delivery carriers for therapeutic agents. Herein, we explored the covalent immobilization of proteins into MSN to generate a stimulus-responsive controlled release system. First, MSN were functionalized with thiol groups using (mercaptopropyl)-trimethoxysilane (MPTMS). Functionalization was verified by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering. The model enzyme carbonic anhydrase (CA) was coupled to sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido]hexanoate (Sulfo-LC-SPDP) at a low ratio of 1:1 to prevent enzyme inactivation and subsequently covalently immobilized into MSN via thiol-disulfide interchange. The enzyme could be released from MSN with 10 mM glutathione, which represents intracellular redox conditions, while it remained bound to the MSN at extracellular redox conditions represented by 1 μM glutathione. The activity of the released enzyme was >80% demonstrating that the enzyme was still largely functional and active after immobilization and release. Human cervical cancer (HeLa) cells were incubated with the MSN-CA bioconjugates at various concentrations for 24 h and the data show good biocompatibility. In summary, we demonstrate the potential of MSN as drug delivery systems for proteins.  相似文献   

6.
介孔二氧化硅纳米粒子(mesoporous silica nanoparticles,MSNs)作为新型纳米载体在生物医药领域具有较好的应用前景,其有别于传统无机材料的物理化学性质对于当今恶性肿瘤的诊断与治疗起着关键性作用。尤其是MSNs作为一种具有高装载量、良好的生物相容性、靶向性以及对药物释放的可控性的载药平台,可用于解决目前临床上恶性肿瘤诊疗中遇到的问题。主要探讨了MSNs探针及MSNs靶向给药系统的应用进展及发展方向,以期为恶性肿瘤诊疗提供思路与参考。  相似文献   

7.
Virus-mediated gene delivery has been, to date, the most successful and efficient method for gene therapy. However, this method has been challenged because of serious safety concerns. Over the past decade, mesoporous silica nanoparticles (MSNs) have attracted much attention for intracellular delivery of nucleic acids. Delivery of cellular plasmid DNA (pDNA) is designed to replace the function of a defective gene and restore its normal function in the cell. Delivery of small interfering RNAs (siRNAs) can selectively knockdown genes by targeting specific mRNAs. The biocompatibility and unique structures of MSNs make these nanoparticles ideal candidates to act as biomolecule carriers. This concise review highlights current progress in the field of nucleic acid delivery using MSNs, specifically for delivery of pDNA, siRNA, and combinatorial delivery of nucleic acids and drugs. The review describes important design parameters presently being applied to MSNs to administer drugs and therapeutic nucleic acids.  相似文献   

8.
Several new types of carriers and technologies have been implemented in the recent past to improve traditional enzyme immobilization which aimed to enhance enzyme loading, activity and stability to decrease the enzyme biocatalyst cost in industrial biotechnology. These include cross-linked enzyme aggregates, microwave-assisted immobilization, click chemistry technology, mesoporous supports and most recently nanoparticle-based immobilization of enzymes. The union of the specific physical, chemical, optical and electrical properties of nanoparticles with the specific recognition or catalytic properties of biomolecules has led to their appearance in myriad novel biotechnological applications. They have been applied time and again for immobilization of industrially important enzymes with improved characteristics. The high surface-to-volume ratio offered by nanoparticles resulted in the concentration of the immobilized entity being considerably higher than that afforded by experimental protocols based on immobilization on planar 2-D surfaces. Enzymes immobilized on nanoparticles showed a broader working pH and temperature range and higher thermal stability than the native enzymes. Compared with the conventional immobilization methods, nanoparticle based immobilization served three important features; (i) nano-enzyme particles are easy to synthesize in high solid content without using surfactants and toxic reagents, (ii) homogeneous and well defined core-shell nanoparticles with a thick enzyme shell can be obtained, and (iii) particle size can be conveniently tailored within utility limits. In addition, with the growing attention paid to cascade enzymatic reaction and in vitro synthetic biology, it is possible that co-immobilization of multi-enzymes could be achieved on these nanoparticles.  相似文献   

9.
Enzyme immobilization has attracted continuous attention in the fields of fine chemistry, biomedicine, and biosensor. The performance of immobilized enzyme largely depends on the structure of supports. Nanostructured supports are believed to be able to retain the catalytic activity as well as ensure the immobilization efficiency of enzyme to a high extent. Electrospinning provides a simple and versatile method to fabricate nanofibrous supports. Compared with other nanostructured supports (e.g. mesoporous silica, nanoparticles), nanofibrous supports show many advantages for their high porosity and interconnectivity. This review mainly discusses the recent advances in using nanofibers as hosts for enzyme immobilization by two different methods, surface attachment and encapsulation. Surface attachment refers to physical adsorption or covalent attachment of enzymes on pristine or modified nanofibrous supports, and encapsulation means electrospinning a mixture of enzyme and polymer. We make a detailed comparison between these two immobilization approaches and highlight their distinct characteristics. The prospective applications of enzyme immobilized electrospun nanofibers in the development of biosensors, biofuel cells and biocatalysts are also discussed.  相似文献   

10.
Biosensors for organophosphates in solution may be constructed by monitoring the activity of acetylcholinesterase (AChE) or organophosphate hydrolase (OPH) immobilized to a variety of microsensor platforms. The area available for enzyme immobilization is small (< 1 mm2) for microsensors. In order to construct microsensors with increased surface area for enzyme immobilization, we used a sol-gel process to create highly porous and stable silica matrices. Surface porosity of sol-gel coated surfaces was characterized using scanning electron microscopy; pore structure was found to be very similar to that of commercially available porous silica supports. Based upon this analysis, porous and non-porous silica beads were used as model substrates of sol-gel coated and uncoated sensor surfaces. Two different covalent chemistries were used to immobilize AChE and OPH to these porous and non-porous silica beads. The first chemistry used amine-silanization of silica followed by enzyme attachment using the homobifunctional linker glutaraldehyde. The second chemistry used sulfhydryl-silanization followed by enzyme attachment using the heterobifunctional linker N-gamma-maleimidobutyryloxy succinimide ester (GMBS). Surfaces were characterized in terms of total enzyme immobilized, total and specific enzyme activity, and long term stability of enzyme activity. Amine derivitization followed by glutaraldehyde linking yielded supports with greater amounts of immobilized enzyme and activity. Use of porous supports not only yielded greater amounts of immobilized enzyme and activity, but also significantly improved long term stability of enzyme activity. Enzyme was also immobilized to sol-gel coated glass slides. The mass of immobilized enzyme increased linearly with thickness of coating. However, immobilized enzyme activity saturated at a porous silica thickness of approximately 800 nm.  相似文献   

11.
The use of heterogeneous biocatalysis in industrial applications is advantageous and the enzyme stability improvement is a continuous challenge. Therefore, we designed β‐galactosidase heterogeneous biocatalysts by immobilization, involving the support synthesis and enzyme selection (from Bacillus circulans, Kluyveromyces lactis, and Aspergillus oryzae). The underivatized, tailored, macro‐mesoporous silica exhibited high surface area, offered high enzyme immobilization yields and activity. Its chemical activation with glyoxyl groups bound the enzyme covalently, which suppressed lixiviation and conferred higher pH and thermal stability (120‐fold than for the soluble enzyme), without observable reduction of activity/stability due to the presence of silica. The best balance between the immobilization yield (68%), activity (48%), and stability was achieved for Bacillus circulans β‐galactosidase immobilized on glyoxyl‐activated silica, without using stabilizing agents or modifying the enzyme. The enzyme stabilization after immobilization in glyoxyl‐activated silica was similar to that observed in macroporous agarose‐glyoxyl support, with the reported microbiological and mechanical advantages of inorganic supports. The whey lactolysis at pH 6.0 and 25°C by using this catalyst (1 mg ml?1, 290 UI g?1) was still 90%, even after 10 cycles of 10 min, in batch process but it could be also implemented on continuous processes at industrial level with similar results.  相似文献   

12.
The characteristics of the interactions co-cultures of ultrafine mesoporous silica nanoparticles (MSNs) and the Liriodendron hybrid suspension cells were systematically investigated using laser scanning confocal microscope (LSCM) and scanning electron microscopy (SEM). Using fluorescein isothiocyanate (FITC) labeling, the LSCM observations demonstrated that MSNs (size, 5-15nm) with attached FITC molecules efficiently penetrated walled plant cells through endocytic pathways, but free FITC could not enter the intact plant cells. The SEM measurements indicated that MSNs readily aggregated on the surface of intact plant cells, and also directly confirmed that MSNs could enter intact plant cells; this was achieved by determining the amount of silicon present. After 24 h of incubation with 1.0mg mL-1 of MSNs, the viability of the plant cells was analyzed using fluorescein diacetate staining; the results showed that these cells retained high viability, and no cell death was observed. Interestingly, after the incubation with MSNs, the Liriodendron hybrid suspension cells retained the capability for plant regeneration via somatic embryogenesis. Our results indicate that ultrafine MSNs hold considerable potential as nano-carriers of extracellular molecules, and can be used to investigate in vitro gene-delivery in plant cells.  相似文献   

13.
Immobilization is a key technology for successful realization of enzyme‐based industrial processes, particularly for production of green and sustainable energy or chemicals from biomass‐derived catalytic conversion. Different methods to immobilize enzymes are critically reviewed. In principle, enzymes are immobilized via three major routes (i) binding to a support, (ii) encapsulation or entrapment, or (iii) cross‐linking (carrier free). As a result, immobilizing enzymes on certain supports can enhance storage and operational stability. In addition, recent breakthroughs in nano and hybrid technology have made various materials more affordable hosts for enzyme immobilization. This review discusses different approaches to improve enzyme stability in various materials such as nanoparticles, nanofibers, mesoporous materials, sol–gel silica, and alginate‐based microspheres. The advantages of stabilized enzyme systems are from its simple separation and ease recovery for reuse, while maintaining activity and selectivity. This review also considers the latest studies conducted on different enzymes immobilized on various support materials with immense potential for biosensor, antibiotic production, food industry, biodiesel production, and bioremediation, because stabilized enzyme systems are expected to be environmental friendly, inexpensive, and easy to use for enzyme‐based industrial applications.  相似文献   

14.
《Process Biochemistry》2010,45(1):39-46
We report the immobilization of Rhizomucor miehei lipase (RmL) onto mesoporous silica materials, in particular the investigations concerning the effects of the level of silica condensation and of the pore size on the enzyme activity. The efficiency of the immobilization was revealed by FTIR spectroscopy. Infrared was also used to determine the quantity of adsorbed enzyme. Immobilization efficiency increased when the RmL concentration in the buffer solution was changed from 2 to 10 mg/mL. Nevertheless, while upon enzyme immobilization the mesopore ordering was sustained for the support recovered after hydrothermal treatment at 100 °C, a structure collapse occurred for the one prepared at 80 °C. The difference in behavior is attributed to the lower hydrothermal stability of this material, which reflects the lower level of silica condensation. The enzyme-containing mesostructured silica was effectively used to catalyze the model esterification reaction of lauric acid with 1-propanol, as the immobilized lipase retained its catalytic activity. A linear relationship was observed between the reaction rate and the amount of catalyst. RmL immobilized on mesoporous materials presented a satisfactory reusability, while the remaining activity of RmL after 4 months of storage was 47% of the initial one.  相似文献   

15.
ObjectivesAu nanoclusters (AuNCs) have been used widely in fluorescence bio‐imaging because of their good fluorescence, small particle size and non‐cytotoxicity. AuNCs are also efficient in computed tomography (CT) imaging. Hence, a dual‐modal imaging probe can be constructed without any complicated modification processes by exploiting the excellent performance of AuNCs. In the present study, AuNCs were enriched with mesoporous silica nanoparticles (MSNs) to obtain enhanced fluorescence/CT dual‐modal imaging, which was capable of acquiring more imaging information for diseases compared with single‐mode imaging.Materials and methodsBiocompatible bovine serum albumin (BSA)‐capped AuNCs were prepared and loaded into amine‐functionalized MSNs to form MSN@AuNCs. BSA‐AuNCs, MSNs, and MSN@AuNCs were characterized by ultraviolet‐visible (UV‐vis) spectra, transmission electron microscopy (TEM), fluorescence spectra, and zeta potential. CT imaging was recorded using micro‐CT scanning. Fluorescence imaging was measured using confocal laser scanning microscopy and flow cytometry.ResultsThe prepared AuNCs and MSNs possessed good properties as previously reported. The fluorescence intensity and CT value of the AuNCs were enhanced after being enriched with MSNs. The nanoparticles were both non‐cytotoxic. Confocal laser scanning microscopy and flow cytometry indicated that MSN@AuNCs in CAL‐27 cells showed improved fluorescence imaging compared with simple AuNCs at the same concentration.ConclusionsThe results revealed that the strategy of enriching AuNCs with MSNs can obtain highly sensitive fluorescence/CT dual‐modal imaging, which indicated the potential of this nanoparticle in the diagnosis and treatment of disease.  相似文献   

16.
Subtilisin Carlsberg (SC) was lyophilized from an aqueous buffer solution containing different amounts of unmodified commercial fumed silica. The activity of the enzyme/fumed silica preparation in hexane was compared to pure freeze-dried enzyme, and to a freeze-dried preparation reported in the literature with potassium chloride as additive. A sharp increase in enzyme activity was found to correlate with an increasing amount of fumed silica added to the enzyme solution prior to freeze-drying. A weight-ratio of 98.5 wt.% fumed silica relative to the mass of the final enzyme/fumed silica preparation led to about 130-fold increased activity of SC in hexane (when compared to pure lyophilized SC in hexane). This is about twice the activation effect compared to including potassium chloride in the buffer solution before freeze-drying [1]. When freezing at −20 °C instead of in liquid nitrogen, even better activation was observed with fumed silica. We hypothesize that the activation of SC in hexane by immobilization of the enzyme on fumed silica is likely due to the distribution of the enzyme on the large surface area of fumed silica. This alleviates mass transfer limitations.  相似文献   

17.
《Process Biochemistry》2014,49(8):1314-1323
We report the effect of random and oriented immobilization of Rhizomucor miehei lipase (RML) on its functional properties. For this purpose, silica nanoparticles (MCM-41 and SBA-15) were prepared, characterized and functionalized by glycidyloxypropyl trimethoxysilane. Direct immobilization of RML on these supports was performed via the variety of amino acid residues on the surface of RML which promotes random immobilization. To perform oriented immobilization, partial modification of epoxy functionalized supports was carried out by introducing iminodiacetic acid groups followed by addition of Cu2+. In this way, immobilization is mainly directed via the most accessible histidine group, followed by intramolecular reaction of the other nucleophilic residues of the enzyme and the remaining epoxy groups on the support. The results showed higher thermal stability for immobilized derivatives compared to the soluble enzyme. Co-solvent stability of the derivatives was also studied in presence of six polar organic solvents (DMSO, THF, acetonitrile, 1-propanol, 2-propanol and dioxane). Influence of the immobilization procedure on activity and selectivity of the immobilized preparations was studied in selective hydrolysis of fish oil. All the derivatives discriminate between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. Remarkable improvement in selectivity was obtained using oriented immobilization of RML.  相似文献   

18.

Key message

We report the uptake of MSNs into the roots and their movement to the aerial parts of four plant species and their quantification using fluorescence, TEM and proton-induced x - ray emission (micro - PIXE) elemental analysis.

Abstract

Monodispersed mesoporous silica nanoparticles (MSNs) of optimal size and configuration were synthesized for uptake by plant organs, tissues and cells. These monodispersed nanoparticles have a size of 20 nm with interconnected pores with an approximate diameter of 2.58 nm. There were no negative effects of MSNs on seed germination or when transported to different organs of the four plant species tested in this study. Most importantly, for the first time, a combination of confocal laser scanning microscopy, transmission electron microscopy and proton-induced X-ray emission (micro-PIXE) elemental analysis allowed the location and quantification MSNs in tissues and in cellular and sub-cellular locations. Our results show that MSNs penetrated into the roots via symplastic and apoplastic pathways and then via the conducting tissues of the xylem to the aerial parts of the plants including the stems and leaves. The translocation and widescale distribution of MSNs in plants will enable them to be used as a new delivery means for the transport of different sized biomolecules into plants.  相似文献   

19.
An evaluation of the stability of several forms (including soluble and two immobilized preparations) of d-amino acid oxidases from Trigonopsis variabilis (TvDAAO) and Rhodotorula gracilis (RgDAAO) is presented here. Initially, both soluble enzymes become inactivated via subunit dissociation, and the most thermostable enzyme seemed to be TvDAAO, which was 3-4 times more stable than RgDAAO at a protein concentration of 30 microg/mL. Immobilization on poorly activated supports was unable to stabilize the enzyme, while highly activated supports improved the enzyme stability. Better results were obtained when using highly activated glyoxyl agarose supports than when glutaraldehyde was used. Thus, multisubunit immobilization on highly activated glyoxyl agarose dramatically improved the stability of RgDAAO (by ca. 15,000-fold) while only marginally improving the stability of TvDAAO (by 15-20-fold), at a protein concentration of 6.7 microg/mL. Therefore, the optimal immobilized RgDAAO was much more stable than the optimal immobilized TvDAAO at this enzyme concentration. The lower stabilization effect on TvDAAO was associated with the inactivation of this enzyme by FAD dissociation that was not prevented by immobilization. Finally, nonstabilized RgDAAO was marginally more stable in the presence of H(2)O(2) than TvDAAO, but after stabilization by multisubunit immobilization, its stability became 10 times higher than that of TvDAAO. Therefore, the most stable DAAO preparation and the optimal choice for an industrial application seems to be RgDAAO immobilized on glyoxyl agarose.  相似文献   

20.
Mucor javanicus lipase was effectively immobilized on silica nanoparticles which were prepared by Stöber method. Glycidyl methacrylate (GMA), which bears a reactive epoxide group, was incorporated onto the surface of the nanoparticles and the epoxide groups were directly used for multipoint coupling of the enzyme. We also introduced amine residues by coupling ethylene diamine (EDA) to the epoxide group of GMA. M. javanicus lipase was covalently immobilized onto the amine-activated silica nanoparticles by using glutaraldehyde (GA) or 1,4 phenylene diisothiocyanate (NCS) as a coupling agent. The lipase loading capacities of the EDA-GA and EDA-NCS nanoparticles (81.3 and 60.9 mg g−1, respectively) were much higher than that of the unmodified GMA nanoparticles (18.9 mg g−1). The relative hydrolytic activities in an aqueous medium of the lipases immobilized on EDA-GA and EDA-NCS attached silica nanoparticles (115% and 107%, respectively) were significantly high and almost in the same range with the free enzyme. This may be due to the improvement of the enzyme–substrate interaction by avoiding the potential aggregation of free lipase molecules. The immobilized lipases were also more resistant to temperature inactivation than the free form. This work demonstrates that the size-controlled silica nanoparticles can be efficiently employed as host materials for enzyme immobilization leading to high activity and stability of the immobilized enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号