首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Embryonic stem (ES) cells, derived from the inner cell mass of blastocyst can differentiate into multiple cell lineages. In this study, we examined the possible involvement of Ras in ES cell differentiation. We found that Ras was activated upon formation of embryoid bodies (EBs), an initial step in ES cell differentiation. When expressed during EB differentiation, a dominant-negative mutant of Ras suppressed induction of marker genes for extraembryonic endoderm differentiation, including GATA-4, GATA-6, alpha-fetoprotein, and hepatocyte nuclear factor 3beta, while an activated mutant promoted their induction. Expression of a Ras mutant that selectively activates the Raf/MEK/Erk pathway also enhanced induction of extraembryonic endoderm markers, and treatment with a MEK inhibitor resulted in their decreased expression. In addition, Ras stimulated downregulation of Nanog, a suppressor of endoderm differentiation in ES cells. These data suggest that Ras activation during EB differentiation plays a crucial role in initiation of extraembryonic endoderm differentiation.  相似文献   

4.
5.
6.
7.
BACKGROUND: The mouse anterior visceral endoderm, an extraembryonic tissue, expresses several genes essential for normal development of structures rostral to the anterior limit of the notochord and has been termed the head organizer. This tissue also has heart-inducing activity and expresses mCer1 which, like its Xenopus homolog cerberus, can induce markers of cardiac specification and anterior neural tissue when ectopically expressed. We investigated the relationship between head and heart induction in Xenopus embryos, which lack extraembryonic tissues. RESULTS: We found three regions of gene expression in the Xenopus organizer: deep endoderm, which expressed cerberus; prechordal mesoderm, which showed overlapping but non-identical expression of genes characteristic of the murine head organizer, such as XHex and XANF-1; and leading-edge dorsoanterior endoderm, which expressed both cerberus and a subset of the genes expressed by the prechordal mesoderm. Microsurgical ablation of the cerberus-expressing endoderm decreased the incidence of heart, but not head, formation. Removal of prechordal mesoderm, in contrast, caused deficits of anterior head structures. Finally, although misexpression of cerberus induced ectopic heads, it was unable to induce genes thought to participate in head induction. CONCLUSIONS: In Xenopus, the cerberus-expressing endoderm is required for heart, but not head, inducing activity. Therefore, this tissue is not the topological equivalent of the murine anterior visceral endoderm. We propose that, in Xenopus, cerberus is redundant to other bone morphogenetic protein (BMP) and Wnt antagonists located in prechordal mesoderm for head induction, but may be necessary for heart induction.  相似文献   

8.
9.
The primitive endoderm arises from the inner cell mass during mammalian pre-implantation development. It faces the blastocoel cavity and later gives rise to the extraembryonic parietal and visceral endoderm. Here, we investigate a key step in primitive endoderm development, the acquisition of apico-basolateral polarity and epithelial characteristics by the non-epithelial inner cell mass cells. Embryoid bodies, formed from mouse embryonic stem cells, were used as a model to study this transition. The outer cells of these embryoid bodies were found to gradually acquire the hallmarks of polarised epithelial cells and express markers of primitive endoderm cell fate. Fgf receptor/Erk signalling is known to be required for specification of the primitive endoderm, but its role in polarisation of this tissue is less well understood. To investigate the function of this pathway in the primitive endoderm, embryoid bodies were cultured in the presence of a small molecule inhibitor of Mek. This inhibitor caused a loss of expression of markers of primitive endoderm cell fate and maintenance of the pluripotency marker Nanog. In addition, a mislocalisation of apico-basolateral markers and disruption of the epithelial barrier, which normally blocks free diffusion across the epithelial cell layer, occurred. Two inhibitors of the Fgf receptor elicited similar phenotypes, suggesting that Fgf receptor signalling promotes Erk-mediated polarisation. This data shows that primitive endoderm cells of the outer layer of embryoid bodies gradually polarise, and formation of a polarised primitive endoderm layer requires the Fgf receptor/Erk signalling pathway.  相似文献   

10.
The Nieuwkoop center is the earliest signaling center during dorsal-ventral pattern formation in amphibian embryos and has been implied to function in induction of the Spemann-Mangold organizer. In zebrafish, Nieuwkoop-center-like activity resides in the dorsal yolk syncytial layer (YSL) at the interface of the vegetal yolk cell and the blastoderm. hex homologs are expressed in the anterior endomesoderm in frogs (Xhex), the anterior visceral endoderm in mice, and the dorsal YSL in zebrafish (hhex). Here, we investigate the control of hhex expression in the YSL. We demonstrate that bozozok (boz) is absolutely required for early hhex expression, while overexpression of boz causes ectopic hhex expression. Activation of Wnt/beta-catenin signaling by LiCl induces hhex expression in wild-type YSL but not in boz mutant embryos, revealing that boz activity is required downstream of Wnt/beta-catenin signaling for hhex expression. Further, we show that the boz-mediated induction of hhex is independent of the Boz-mediated repression of bmp2b. Our data reveal that repressive effects of both Vega1 and Vega2 may be responsible for the exclusion of hhex expression from the ventral and lateral parts of the YSL. In summary, zebrafish hhex appears to be activated by Wnt/beta-catenin in the dorsal YSL, where Boz acts in a permissive way to limit repression of hhex by Vega1 and Vega2.  相似文献   

11.
12.
Activity-regulated, cytoskeleton-associated protein (Arc) was first identified as an immediate-early gene regulated by synaptic activity. We have studied its functional role in vivo using a gene-targeting approach. We found that Arc is encoded by a single exon, and Arc mRNA is ubiquitously expressed in early mouse embryos. Homozygous Arc mutants are severely growth-retarded, fail to gastrulate and subsequently die before day 8.5 of embryogenesis. Further analysis revealed severe disorganization of visceral endoderm formation, and total separation and ectopic location of embryonic and extraembryonic structure. These findings demonstrate that Arc function is essential for early embryo development and patterning in mice, and support the hypothesis that signaling from visceral endoderm is essential for normal patterning of the extraembryonic and embryonic structure.  相似文献   

13.
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm‐like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.  相似文献   

14.
15.
Nodal/activin signaling plays a key role in anterior-posterior (A-P) axis formation by inducing the anterior visceral endoderm (AVE), the extraembryonic signaling center that initiates anterior patterning in the embryo. Here we provide direct evidence that the mitogen-activated protein kinase (MAPK) p38 regulates AVE specification through a crosstalk with the Nodal/activin signaling pathway. We show that p38 activation is directly stimulated by Nodal/activin and fails to be maintained upon inhibition of this pathway both in vivo and in vitro. In turn, p38 strengthens the Nodal signaling response by phosphorylating the Smad2 linker region and enhancing the level of Smad2 activation. Furthermore, we demonstrate that this p38 amplification loop is essential for correct specification of the AVE in two ways: first, by showing that inhibiting p38 activity in 5.5 days postcoitum embryo cultures leads to a switch from AVE to an extraembryonic visceral endoderm cell identity, and second, by demonstrating that genetically reducing p38 activity in a Nodal-sensitive background leads to a failure of AVE specification in vivo. Collectively, our results reveal a novel role for p38 in regulating the threshold of Nodal signaling and propose a new mechanism by which A-P axis development can be reinforced during early embryogenesis.  相似文献   

16.
17.
Epithelial-to-mesenchymal transitions (EMTs) play key roles in the normal development of an organism as well as its demise following the metastasis of a malignant tumour. An EMT during early mouse development results in the differentiation of primitive endoderm into the parietal endoderm that forms part of the parietal yolk sac. In the embryo, primitive endoderm develops from cells in the inner cell mass, but the signals that instruct these cells to become specified and adopt an epithelial fate are poorly understood. The mouse F9 teratocarcinoma cell line, a model that can recapitulate the in vivo primitive to parietal endoderm EMT, has been used extensively to elucidate the signalling cascades involved in extraembryonic endoderm differentiation. Here, we identified Wnt6 as a gene up-regulated in F9 cells in response to RA and show that Wnt6 expressing cells or cells exposed to Wnt6 conditioned media form primitive endoderm. Wnt6 induction of primitive endoderm is accompanied by beta-catenin and Snail1 translocation to the nucleus and the appearance of cytokeratin intermediate filaments. Attenuating glycogen synthase kinase 3 activity using LiCl gave similar results, but the fact that cells de-differentiate when LiCl is removed reveals that other signalling pathways are required to maintain cells as primitive endoderm. Finally, Wnt6-induced primitive endodermal cells were tested to determine their competency to complete the EMT and differentiate into parietal endoderm. Towards that end, results show that up-regulating protein kinase A activity is sufficient to induce markers of parietal endoderm. Together, these findings indicate that undifferentiated F9 cells are responsive to canonical Wnt signalling, which negatively regulates glycogen synthase kinase 3 activity leading to the epithelialization and specification of primitive endoderm competent to receive additional signals required for EMT. Considering the ability of F9 cells to mimic an in vivo EMT, the identification of this Wnt6-beta-catenin-Snail signalling cascade has broad implications for understanding EMT mechanisms in embryogenesis and metastasis.  相似文献   

18.
Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts grow infinitely while maintaining pluripotency. Leukemia inhibitory factor (LIF) can maintain self-renewal of mouse ES cells through activation of Stat3. However, LIF/Stat3 is dispensable for maintenance of ICM and human ES cells, suggesting that the pathway is not fundamental for pluripotency. In search of a critical factor(s) that underlies pluripotency in both ICM and ES cells, we performed in silico differential display and identified several genes specifically expressed in mouse ES cells and preimplantation embryos. We found that one of them, encoding the homeoprotein Nanog, was capable of maintaining ES cell self-renewal independently of LIF/Stat3. nanog-deficient ICM failed to generate epiblast and only produced parietal endoderm-like cells. nanog-deficient ES cells lost pluripotency and differentiated into extraembryonic endoderm lineage. These data demonstrate that Nanog is a critical factor underlying pluripotency in both ICM and ES cells.  相似文献   

19.
The extraembryonic endoderm of mammals is essential for nutritive support of the fetus and patterning of the early embryo. Visceral and parietal endoderm are major subtypes of this lineage with the former exhibiting most, if not all, of the embryonic patterning properties. Extraembryonic endoderm (XEN) cell lines derived from the primitive endoderm of mouse blastocysts represent a cell culture model of this lineage, but are biased towards parietal endoderm in culture and in chimeras. In an effort to promote XEN cells to adopt visceral endoderm character we have mimicked different aspects of the in vivo environment. We found that BMP signaling promoted a mesenchymal-to-epithelial transition of XEN cells with up-regulation of E-cadherin and down-regulation of vimentin. Gene expression analysis showed the differentiated XEN cells most resembled extraembryonic visceral endoderm (exVE), a subtype of VE covering the extraembryonic ectoderm in the early embryo, and during gastrulation it combines with extraembryonic mesoderm to form the definitive yolk sac. We found that laminin, a major component of the extracellular matrix in the early embryo, synergised with BMP to promote highly efficient conversion of XEN cells to exVE. Inhibition of BMP signaling with the chemical inhibitor, Dorsomorphin, prevented this conversion suggesting that Smad1/5/8 activity is critical for exVE induction of XEN cells. Finally, we show that applying our new culture conditions to freshly isolated parietal endoderm (PE) from Reichert's membrane promoted VE differentiation showing that the PE is developmentally plastic and can be reprogrammed to a VE state in response to BMP. Generation of visceral endoderm from XEN cells uncovers the true potential of these blastocyst-derived cells and is a significant step towards modelling early developmental events ex vivo.  相似文献   

20.
During gastrulation, a cascade of inductive tissue interactions converts pre-existing polarity in the mammalian embryo into antero-posterior pattern. This process is triggered by Nodal, a protein related to transforming growth factor-beta (TFG-beta) that is expressed in the epiblast and visceral endoderm, and its co-receptor Cripto, which is induced downstream of Nodal. Here we show that the proprotein convertases Spc1 and Spc4 (also known as Furin and Pace4, respectively) are expressed in adjacent extraembryonic ectoderm. They stimulate Nodal maturation after its secretion and are required in vivo for Nodal signalling. Embryo explants deprived of extraembryonic ectoderm phenocopy Spc1(-/-); Spc4(-/-) double mutants in that endogenous Nodal fails to induce Cripto. But recombinant mature Nodal, unlike uncleaved precursor, can efficiently rescue Cripto expression. Cripto is also expressed in explants treated with bone morphogenetic protein 4 (BMP4). This indicates that Nodal may induce Cripto through both a signalling pathway in the embryo and induction of Bmp4 in the extraembryonic ectoderm. A lack of Spc1 and Spc4 affects both pathways because these proteases also stimulate induction of Bmp4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号