首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Background Manganese (Mn) is an essential micronutrient that is phytotoxic under certain edaphic and climatic conditions. Multiple edaphic factors regulate Mn redox status and therefore its phytoavailability, and multiple environmental factors including light intensity and temperature interact with Mn phytotoxicity. The complexity of these interactions coupled with substantial genetic variation in Mn tolerance have hampered the recognition of Mn toxcity as an important stress in many natural and agricultural systems.Scope Conflicting theories have been advanced regarding the mechanism of Mn phytotoxicity and tolerance. One line of evidence suggests that Mn toxicity ocurs in the leaf apoplast, while another suggests that toxicity occurs by disruption of photosynthetic electron flow in chloroplasts. These conflicting results may at least in part be attributed to the light regimes employed, with studies conducted under light intensities approximating natural sunlight showing evidence of photo-oxidative stress as a mechanism of toxicity. Excessive Mn competes with the transport and metabolism of other cationic metals, causing a range of induced nutrient deficiencies. Compartmentation, exclusion and detoxification mechanisms may all be involved in tolerance to excess Mn. The strong effects of light, temperature, precipitation and other climate variables on Mn phytoavailability and phytotoxicity suggest that global climate change is likely to exacerbate Mn toxicity in the future, which has largely escaped scientific attention.Conclusions Given that Mn is terrestrially ubiquitous, it is imperative that the heightened risk of Mn toxicity to both managed and natural plant ecosystems be factored into evaluation of the potential impacts of global climate change on vegetation. Large inter- and intraspecific genetic variation in tolerance to Mn toxicity suggests that increased Mn toxicity in natural ecosystems may drive changes in community composition, but that in agroecosystems crops may be developed with greater Mn tolerance. These topics deserve greater research attention.  相似文献   

5.
Malaria: new ideas, old problems, new technologies   总被引:2,自引:0,他引:2  
  相似文献   

6.
Hardie DG 《Current biology : CB》2000,10(20):R757-R759
The phenomenon whereby the presence of oxygen regulates the rate of glucose metabolism was first described by Louis Pasteur. A novel mechanism has now been discovered, involving the AMP-activated protein kinase cascade, that can account for the Pasteur effect in ischaemic heart muscle.  相似文献   

7.
8.
9.
10.
Evolution of genome size: new approaches to an old problem   总被引:2,自引:0,他引:2  
Eukaryotic genomes come in a wide variety of sizes. Haploid DNA contents (C values) range > 80,000-fold without an apparent correlation with either the complexity of the organism or the number of genes. This puzzling observation, the C-value paradox, has remained a mystery for almost half a century, despite much progress in the elucidation of the structure and function of genomes. Here I argue that new approaches focussing on the genetic mechanisms that generate genome-size differences could shed much light on the evolution of genome size.  相似文献   

11.
12.
13.
14.
15.
16.
Anticipation in myotonic dystrophy: new light on an old problem.   总被引:29,自引:10,他引:19       下载免费PDF全文
The concept of anticipation, the occurrence of a genetic disorder at progressively earlier ages in successive generations, has been debated from the early years of this century, with myotonic dystrophy as the most striking example. Throughout most of this period there has been controversy as to whether the phenomenon resulted from observational and ascertainment biases or reflected a more fundamental mechanism. The recent discovery of inherited unstable DNA sequences, first in fragile-X mental retardation and now in myotonic dystrophy, not only confirms that anticipation indeed has a true biological basis but provides a specific molecular mechanism for it; this discovery can explain many of the puzzling anomalies in the inheritance of myotonic dystrophy and may prove relevant to comparable problems in other genetic disorders.  相似文献   

17.
The idea that the physical properties of cuticular lipids affect cuticular permeability goes back over 65 years. This proposal has achieved textbook status, despite controversy and the general lack of direct supporting evidence. Recent work supports the standard model, in which lipid melting results in increased cuticular permeability. Surprisingly, although all species studied to date can synthesize lipids that remain in a solid state at environmental temperatures, partial melting often occurs due to the deposition of lipids with low melting points. This will tend to increase water loss; the benefits may include better dispersal of lipids or other compounds across the cuticle or improved communication via cuticular pheromones. In addition, insects with high melting-point lipids are not necessarily less permeable at low temperatures. One likely reason is variation in lipid properties within the cuticle. Surface lipids differ from one region to another, and biophysical studies of model mixtures suggest the occurrence of phase separation between melted and solid lipid fractions. Lipid phase separation may have important implications for insect water balance and chemical communication.  相似文献   

18.
Proceeding from the recent finding that the main components of the Ca++ signal pathway are located in small membrane protrusions on the surface of differentiated cells, called microvilli, a novel concept of cellular Ca++ signaling was developed. The main features of this concept can be summarized as follows: Microvilli are formed on the cell surface of differentiating or resting cells from exocytic membrane domains, growing out from the cell surface by elongation of an internal bundle of actin filaments. The microvillar tip membranes contain all functional important proteins synthesized such as ion channels and transporters for energy-providing substrates and structural components, which are, in rapidly growing undifferentiated cells, distributed over the whole cell surface by lateral diffusion. The microvillar shaft structure, a bundle of actin filaments, forms a dense cytoskeletal matrix tightly covered by the microvillar lipid membrane and represents an effective diffusion barrier separating the microvillar tip compartment (entrance compartment) from the cytoplasm. This diffusion barrier prevents the passage of low molecular components such as Ca++ glucose and other relevant substrates from the entrance compartment into the cytoplasm. The effectiveness of the actin-based diffusion barrier is modulated by various signal pathways and effectors, most importantly, by the actin-depolymerizing/reorganizing activity of the phospholipase C (PLC)-coupled Ca++ signaling. Moreover, the microvillar bundle of actin filaments plays a dual role in Ca++ signaling. It combines the function of a diffusion barrier, preventing Ca++ influx into the resting cell, with that of a high-affinity, ATP-dependent, and IP3-sensitive Ca++ store. Activation of Ca++ signaling via PLC-coupled receptors simultaneously empties Ca++ stores and activates the influx of external Ca++. The presented concept of Ca++ signaling is compatible with all established data on Ca++ signaling. Properties of Ca++ signaling, that could not be reconciled with the basic principles of the current hypothesis, are intrinsic properties of the new concept. Quantal Ca++ release, Ca++-induced Ca++ release (CICR), the coupling phenomen between the filling state of the Ca++ store and the activity of the Ca++ influx pathway, as well as the various yet unexplained complex kinetics of Ca++ uptake and release can be explained on a common mechanistic basis. J. Cell. Physiol. 180:19–34, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
Loss of genome maintenance may causally contribute to ageing, as exemplified by the premature appearance of multiple symptoms of ageing in a growing family of human syndromes and in mice with genetic defects in genome maintenance pathways. Recent evidence revealed a similarity between such prematurely ageing mutants and long-lived mice harbouring mutations in growth signalling pathways. At first sight this seems paradoxical as they represent both extremes of ageing yet show a similar 'survival' response that is capable of delaying age-related pathology and extending lifespan. Understanding the mechanistic basis of this response and its connection with genome maintenance would open exciting possibilities for counteracting cancer or age-related diseases, and for promoting longevity.  相似文献   

20.
There is a clear need for improved epidemic malaria surveillance mechanisms in areas prone to the disease. Epidemiological surveillance systems are rarely able to provide information in a sufficiently timely manner for adequate epidemic response. This is especially true in African countries where surveillance is poorly developed, and particularly so in remote regions of unstable malaria such as desert fringes. There is long standing evidence linking climatic variability and epidemic risk. The last ten years have seen significant developments in Environmental Information System (EIS) for a range of natural resource management purposes. The routine information products from these systems have been shown to be both spatially and temporally related to malaria transmission indicators across the African continent. EIS may therefore provide a useful and cost effective input to epidemic malaria control planning and response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号