首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BRCA1 is an important mediator of the DNA damage response pathway. Previous studies have identified a number of proteins that associate with BRCA1 at nuclear foci after ionizing radiation (IR)-induced DNA damage. However, the co-localization patterns of BRCA1 and various DNA damage response proteins have not yet been systematically quantified and compared within the same experimental system. In this study, a new inducible human cell line was established to allow unambiguous detection of YFP–BRCA1 at nuclear foci. Quantitative 2-D microscopic analysis was performed to compare the intranuclear co-localization of YFP–BRCA1 with 10 cellular proteins and 4 cellular domains before and after IR. Intriguingly, YFP–BRCA1 displayed significantly better focal co-localization with BARD1, RAP80 and Abraxas than with the upstream foci-initiating proteins γH2AX and MDC1. In contrast to previous reports, we found that the co-localization between YFP–BRCA1 and 53BP1 foci was surprisingly weak. Quantitative analyses of 3-D confocal images showed that ~ 60% of 53BP1 foci were unrelated to YFP–BRCA1 foci, ~ 35% of foci were abutting and only ~ 5% of foci co-localized. The YFP–BRCA1 and 53BP1 nuclear foci were distinctively separated within the first 3 h after IR. In addition, in situ nuclear retention analysis revealed YFP–BRCA1 and BARD1 are less mobile than 53BP1 at IR-induced nuclear foci. Our findings indicate that BRCA1–BARD1 and 53BP1 are proximal but not overlapping at DNA break sites and are consistent with recent evidence for distinct roles of these proteins in the DNA damage response pathway.  相似文献   

2.
RAP80 (receptor-associated protein 80) is a ubiquitin-binding protein that can specifically recognize and bind to Lys-63-linked polyubiquitin chains, thus targeting the BRCA1-A complex to DNA damage sites. To study the role of RAP80 in vivo, we generated RAP80-deficient mice. The deficient mice are prone to B-cell lymphomagenesis. B-cell lymphomas in RAP80-deficient mice are nearly diploid but harbor clonal chromosome translocations. Moreover, the deficient mice are hypersensitive to ionizing radiation. Repair of ionizing radiation-induced DNA double-strand breaks is impaired in RAP80-deficient mouse embryonic fibroblasts. Mechanistically, loss of RAP80 suppresses recruitment of the BRCA1-A complex to DNA damage sites and abrogates the DNA damage repair process at DNA damage sites. Taken together, these results reveal that RAP80 plays a crucial role in the DNA damage response and in maintaining genomic integrity.  相似文献   

3.
Mutations in BRCA1 account for a significant proportion of familial breast and ovarian cancers. BRCA1 has been implicated in DNA damage responses including double-strand break (DSB) repair. However, its exact role in DSB repair and its functional relationship with other known repair proteins remain to be elucidated. In this study, we carried out a cytological analysis of the effect of BRCA1 on damage-induced nuclear focus formation mediated by the replication protein A (RPA). RPA is a multi-functional protein that participates in both DNA replication and various types of DNA repair including DSB repair. Following ionizing radiation (IR), RPA and BRCA1 formed punctate nuclear staining patterns that co-localized with each other, consistent with the implicated roles of both proteins in the same repair process. The number of damage-induced RPA foci in BRCA1-deficient cells, however, was significantly greater than that in BRCA1-positive cells. Moreover, the effect of BRCA1 on the RPA staining pattern appeared to be specific for IR but not ultraviolet (UV) irradiation. These data suggest that BRCA1 plays an important role in processing the RPA-associated intermediates during DSB repair.  相似文献   

4.
5.
周纪东  喻晓蔚 《生命科学》2002,14(5):288-290,274
乳腺癌和卵巢癌敏感基因BRCA1和BRCA2与同源重组,DNA损伤修复,胚胎生长,转录调控及遍在蛋白化有关,其中,BRCA1和BRCA2在DNA损伤修复和转录调控中功能的确定,将有助于探讨和阐明两者的肿瘤抑制功能及其机理,作者将综述近年来有关BRCA1和BRCA2在DNA损伤修复和转录调控中功能研究的最新进展。  相似文献   

6.
MDC1 (NFBD1) and 53BP1 are critical mediators of the mammalian DNA damage response (DDR) at nuclear foci. Here we show by quantitative imaging assays that MDC1 and 53BP1 are similar in total copy number (~1200 copies per focus), but differ substantially in dynamics at both replication-associated nuclear bodies in normal cells and DNA repair foci in ionizing radiation (IR)-damaged cells. The majority of MDC1 (~80%) is extremely mobile and under continuous exchange, with only a small fraction (~20%) remaining immobile at foci irrespective of IR treatment. By contrast, 53BP1 has a smaller mobile fraction (~35%) and a larger immobile fraction (~65%) at nuclear bodies, and becomes more dynamic (~20% increase in mobile pool) upon IR-induced DNA damage. More specifically, the dynamics of 53BP1 is dependent on a minimal foci-targeting region (1231-1709), and differentially regulated by its N-terminus (1-1231) and C-terminal tBRCT domain (1709-1972). Furthermore, MDC1 knockdown, or disruption of 53BP1-MDC1 interaction, reduced the number of 53BP1 molecules at foci by ~60%, but only modestly affected 53BP1 retention. This novel in vivo evidence reveals distinct dynamics of MDC1 and 53BP1 at different types of nuclear structures, and shows that MDC1 directly recruits and retains a subset of 53BP1 for DNA repair.  相似文献   

7.
乳腺癌易感蛋白1在DNA损伤修复中的作用   总被引:1,自引:0,他引:1  
人类乳腺癌易感基因1(breast cancer susceptibility gene 1,BRCA1)首先是在乳腺癌家族中发现的,是具有遗传倾向的乳腺癌和卵巢癌易感基因,其基因的突变与家族性乳腺癌及卵巢癌的发生有密切联系。BRCA1是一种抑癌基因,其基因产物可以参与维持基因组稳定性的多条细胞信号通路,例如DNA损伤诱导的细胞周期调控、DNA损伤修复、基因转录调节、细胞凋亡、泛素化等重要的细胞活动。本文就近几年来BRCA1在DNA损伤修复中的作用的研究进展作一综述,包括DNA损伤诱导的细胞周期检查点的激活和DNA损伤修复两方面。  相似文献   

8.
Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response.  相似文献   

9.
10.
RD‐N, an aminomethylated derivative of riccardin D, is a lysosomotropic agent that can trigger lysosomal membrane permeabilization followed by cathepsin B (CTSB)‐dependent apoptosis in prostate cancer (PCa) cells, but the underlying mechanisms remain unknown. Here we show that RD‐N treatment drives CTSB translocation from the lysosomes to the nucleus where it promotes DNA damage by suppression of the breast cancer 1 protein (BRCA1). Inhibition of CTSB activity with its specific inhibitors, or by CTSB‐targeting siRNA or CTSB with enzyme‐negative domain attenuated activation of BRCA1 and DNA damage induced by RD‐N. Conversely, CTSB overexpression resulted in inhibition of BRCA1 and sensitized PCa cells to RD‐N‐induced cell death. Furthermore, RD‐N‐induced cell death was exacerbated in BRCA1‐deficient cancer cells. We also demonstrated that CTSB/BRCA1‐dependent DNA damage was critical for RD‐N, but not for etoposide, reinforcing the importance of CTSB/BRCA1 in RD‐N‐mediated cell death. In addition, RD‐N synergistically increased cell sensitivity to cisplatin, and this effect was more evidenced in BRCA1‐deficient cancer cells. This study reveals a novel molecular mechanism that RD‐N promotes CTSB‐dependent DNA damage by the suppression of BRCA1 in PCa cells, leading to the identification of a potential compound that target lysosomes for cancer treatment.  相似文献   

11.
12.
The tumor suppressor BRCA1 accumulates at sites of DNA damage in a ubiquitin‐dependent manner. In this work, we revisit the role of RAP80 in promoting BRCA1 recruitment to damaged chromatin. We find that RAP80 acts redundantly with the BRCA1 RING domain to promote BRCA1 recruitment to DNA damage sites. We show that that RNF8 E3 ligase acts upstream of both the RAP80‐ and RING‐dependent activities, whereas RNF168 acts uniquely upstream of the RING domain. BRCA1 RING mutations that do not impact BARD1 interaction, such as the E2 binding‐deficient I26A mutation, render BRCA1 unable to accumulate at DNA damage sites in the absence of RAP80. Cells that combine BRCA1 I26A and mutations that disable the RAP80–BRCA1 interaction are hypersensitive to PARP inhibition and are unable to form RAD51 foci. Our results suggest that in the absence of RAP80, the BRCA1 E3 ligase activity is necessary for recognition of histone H2A Lys13/Lys15 ubiquitylation by BARD1, although we cannot rule out the possibility that the BRCA1 RING facilitates ubiquitylated nucleosome recognition in other ways.  相似文献   

13.
The phosphorylation state of the tumor suppressor protein BRCA1 is tightly associated with its functions including cell cycle control and DNA repair. Protein kinases involved in the DNA damage checkpoint control, such as ATM, ATR, and hCds1/Chk2, have been shown to phosphorylate and activate BRCA1 upon DNA damage. We reported previously that protein phosphatase 1alpha (PP1alpha) interacts with and dephosphorylates hCds1/Chk2-phosphorylated BRCA1. This study demonstrates the identification of a PP1-binding motif 898KVTF901 in BRCA1. Mutation or deletion of critical residues in this PP1-binding motif substantially reduces the interaction between BRCA1 and PP1alpha. PP1alpha can also dephosphorylate ATM and ATR phosphorylation sites in BRCA1 and may serve as a general regulator for BRCA1 phosphorylation. Unlike wild-type BRCA1, expression of the PP1 non-binding mutant BRCA1 protein in BRCA1-deficient cells failed to enhance survival after DNA damage. Taken together, these results suggest that interaction with PP1alpha is important for BRCA1 function.  相似文献   

14.
TopBP1 is a checkpoint protein that colocalizes with ATR at sites of DNA replication stress. In this study, we show that TopBP1 also colocalizes with 53BP1 at sites of DNA double‐strand breaks (DSBs), but only in the G1‐phase of the cell cycle. Recruitment of TopBP1 to sites of DNA replication stress was dependent on BRCT domains 1–2 and 7–8, whereas recruitment to sites of DNA DSBs was dependent on BRCT domains 1–2 and 4–5. The BRCT domains 4–5 interacted with 53BP1 and recruitment of TopBP1 to sites of DNA DSBs in G1 was dependent on 53BP1. As TopBP1 contains a domain important for ATR activation, we examined whether it contributes to the G1 cell cycle checkpoint. By monitoring the entry of irradiated G1 cells into S‐phase, we observed a checkpoint defect after siRNA‐mediated depletion of TopBP1, 53BP1 or ATM. Thus, TopBP1 may mediate the checkpoint function of 53BP1 in G1.  相似文献   

15.
16.
《Molecular cell》2021,81(22):4692-4708.e9
  1. Download : Download high-res image (156KB)
  2. Download : Download full-size image
  相似文献   

17.
We have been able to demonstrate that a fraction of DNA becomes crosslinked to nuclear lamina shells isolated from Ehrlich ascites tumour cells irradiated with UV light. Terminal labeling of short DNA fragments covalently attached to proteins reveals that DNA has become crosslinked to all three lamins and to a protein comigrating with vimentin.  相似文献   

18.
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3''-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.  相似文献   

19.
During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and γH2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1Ser25 and 53BP1Ser1778 phosphorylation. In response to exogenous DSBs, 53BP1Ser25 and 53BP1Ser1778 phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.  相似文献   

20.
DNA double-strand breaks can seriously damage the genetic information that organisms depend on for survival and reproduction. Therefore, cells require a robust DNA damage response mechanism to repair the damaged DNA. Homologous recombination (HR) allows error-free repair, which is key to maintaining genomic integrity. Long non-coding RNAs (lncRNAs) are RNA molecules that are longer than 200 nucleotides. In recent years, a number of studies have found that lncRNAs can act as regulators of gene expression and DNA damage response mechanisms, including HR repair. Moreover, they have significant effects on the occurrence, development, invasion and metastasis of tumor cells, as well as the sensitivity of tumors to radiotherapy and chemotherapy. These studies have therefore begun to expose the great potential of lncRNAs for clinical applications. In this review, we focus on the regulatory roles of lncRNAs in HR repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号