首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance.  相似文献   

2.
The transverse carpal ligament (TCL) plays a critical role in carpal tunnel biomechanics through interactions with its surrounding tissues. The purpose of this study was to investigate the in vivo adaptations of the TCL’s mechanical properties in response to repetitive hand use in pianists using acoustic radiation force impulse (ARFI) imaging. It was hypothesized that pianists, in comparison to non-pianists, would have a stiffer TCL as indicated by an increased acoustic shear wave velocity (SWV). ARFI imagining was performed for 10 female pianists and 10 female non-pianists. The median SWV values of the TCL were determined for the entire TCL, as well as for its radial and ulnar portions, rTCL and uTCL, respectively. The TCL SWV was significantly increased in pianists relative to non-pianists (p < 0.05). Additionally, the increased SWV was location dependent for both pianist and non-pianist groups (p < 0.05), with the rTCL having a significantly greater SWV than the uTCL. Between groups, the rTCL SWV of pianists was 22.2% greater than that of the non-pianists (p < 0.001). This localized increase of TCL SWV, i.e. stiffening, may be primarily attributable to focal biomechanical interactions that occur at the radial TCL aspect where the thenar muscles are anchored. Progressive stiffening of the TCL may become constraining to the carpal tunnel, leading to median nerve compression in the tunnel. TCL maladaptation helps explain why populations who repeatedly use their hands are at an increased risk of developing musculoskeletal pathologies, e.g. carpal tunnel syndrome.  相似文献   

3.
Objective analysis of hand and finger kinematics is important to increase understanding of hand function and to quantify motor symptoms for clinical diagnosis. The aim of this paper is to compare a new 3D measurement system containing multiple miniature inertial sensors (PowerGlove) with an opto-electronic marker system during specific finger tasks in three healthy subjects. Various finger movements tasks were performed: flexion, fast flexion, tapping, hand open/closing, ab/adduction and circular pointing. 3D joint angles of the index finger joints and position of the thumb and index were compared between systems. Median root mean square differences of the main joint angles of interest ranged between 3.3 and 8.4deg. Largest differences were found in fast and circular pointing tasks, mainly in range of motion. Smallest differences for all 3D joint angles were observed in the flexion tasks. For fast finger tapping, the thumb/index amplitude showed a median difference of 15.8mm. Differences could be explained by skin movement artifacts caused by relative marker movements of the marker system, particularly during fast tasks; large movement accelerations and angular velocities which exceeded the range of the inertial sensors; and by differences in segment calibrations between systems. The PowerGlove is a system that can be of value to measure 3D hand and finger kinematics and positions in an ambulatory setting. The reported differences need to be taken into account when applying the system in studies understanding the hand function and quantifying hand motor symptoms in clinical practice.  相似文献   

4.
Manual dexterity varies across species of primates in accord with hand morphology and degree of fine motor control of the digits. Platyrrhine monkeys achieve less direct opposition between thumb and index finger than that of catarrhine primates, and many of them typically whole-hand grip. However, tufted capuchins (Cebus apella), exhibit a degree of independent control of the digits and effective thumb–forefinger opposition. We report how capuchins prehended small objects, with particular attention to the form of sequential fine movements of the fingers, choice of hand, and differences between the two hands in the temporal properties of reaching and grasping. We compare these actions across tasks with differing demands for fine motor control. For tasks that required all the digits to flex in synchrony, capuchins displayed smooth, fast, and efficient reach-to-grasp movements and a higher endurance than for tasks requiring more complex digital coordination. These latter tasks induced a slightly differentiated preshaping of the hand when approaching the objects, indicating preparation for grasping in advance of contact with the object. A right-hand preponderance for complex digital coordination was evident. The monkeys coordinated their fingers rather poorly at the substrate, and they took longer to achieve control of the objects when complex coordination was required than when simultaneous flexion was sufficient. We conclude that precise finger coordination is more effortful and less well coordinated, and the coordination is less lateralized, in capuchins than in catarrhine primates.  相似文献   

5.
Bella SD  Palmer C 《PloS one》2011,6(6):e20518
We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement "signatures" may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound.  相似文献   

6.
The estimation of the time of exposure of a picture portraying an action increases as a function of the amount of movement implied in the action represented. This effect suggests that the perceiver creates an internal embodiment of the action observed as if internally simulating the entire movement sequence. Little is known however about the timing accuracy of these internal action simulations, specifically whether they are affected by the level of familiarity and experience that the observer has of the action. In this study we asked professional pianists to reproduce different durations of exposure (shorter or longer than one second) of visual displays both specific (a hand in piano-playing action) and non-specific to their domain of expertise (a hand in finger-thumb opposition and scrambled-pixels) and compared their performance with non-pianists. Pianists outperformed non-pianists independently of the time of exposure of the stimuli; remarkably the group difference was particularly magnified by the pianists’ enhanced accuracy and stability only when observing the hand in the act of playing the piano. These results for the first time provide evidence that through musical training, pianists create a selective and self-determined dynamic internal representation of an observed movement that allows them to estimate precisely its temporal duration.  相似文献   

7.
The purpose of the study was to examine age-related differences in electromyographic (EMG) responses to transcranial magnetic stimulation (TMS) during functional isometric contractions in left and right hands. EMG responses were recorded from the first dorsal interosseus muscle following TMS in 10 young (26.6 +/- 1.3 yr) and 10 old (67.6 +/- 2.3 yr) right-handed subjects. Muscle evoked potentials (MEPs) and silent-period durations were obtained in the left and right hands during index finger abduction, a precision grip, a power grip, and a scissor grip, while EMG was held constant at 5% of maximum. For all tasks, MEP area was 30% (P < 0.001) lower in the left hand of old compared with young subjects, whereas there was no age difference in the right hand. The duration of the EMG silent period was 14% (P < 0.001) shorter in old (150.3 +/- 2.9 ms) compared with young (173.9 +/- 3.0 ms) subjects, and the age differences were accentuated in the left hand (19% shorter, P < 0.001). For all subjects, the largest MEP area (10-12% larger) and longest EMG silent period (8-19 ms longer) were observed for the scissor grip compared with the other three tasks, and the largest task-dependent change in these variables was observed in the right hand of older adults. These differences in corticospinal control in the left and right hands of older adults may reflect neural adaptations that occur throughout a lifetime of preferential hand use for skilled (dominant) and unskilled (nondominant) motor tasks.  相似文献   

8.
A kinematic model representing the versatility of the human hand is needed to evaluate biomechanical function and predict injury risk in the workplace. We improved upon an existing optoelectronic-based kinematic hand model with grouped metacarpals by defining segmented metacarpals and adding the trapeziometacarpal joint of the thumb. Eight participants performed three static postures (neutral pose, cylinder grip, cap grip) to evaluate kinematic performance of three different models, with one, two, and four metacarpal segment(s). Mean distal transverse metacarpal arch angles in the four-segment metacarpal model were between 22.0° ± 3.3° (neutral pose) and 32.1° ± 3.7° (cap grip). Representation of the metacarpals greatly influenced metacarpophalangeal joint rotations. Both the two- and four-segment metacarpal models displayed significantly lower metacarpophalangeal joint ‘supination’ angles (than the one-segment model) for the fourth and fifth fingers. However, the largest reductions were for the four- versus one-segment models, with mean differences ranging from 9.3° (neutral pose) to 17.0° (cap grip) for the fourth finger and 16.3° (neutral pose) to 33.0° (cylinder grip) for the fifth finger. MCP joint abduction/adduction angles of the fourth and fifth fingers also decreased with segmentation of the metacarpals, although the lowest magnitudes generally occurred in the four-segment model. Overall, the four-segment metacarpal model produced the lowest accessory rotations in non-dominant axes, and best matched previous radiological studies that found MCP joint pronation/supination angles were typically less than 10°. The four-segment metacarpal model, with improved anatomic fidelity, will better serve future studies of detailed actions of the hand in clinical or work applications.  相似文献   

9.
Early identification of a syndrome at birth is of paramount importance for genetic counselling and possible prevention. Often malformation of the hands and fingers are cardinal manifestations of recognizable syndromes. As there are no published standards for hand and finger size for Malay newborn infants, this study was undertaken to establish normal values for hand, middle finger and palmar lengths, and their indices. A cross-sectional study was done on 509 consecutive newborn Malay babies between 34 and 42 weeks of gestation. Measurements were made on the right hand according to the recommended guidelines of Bergsma & Feingold (1975). The mean values for the measurements did not differ significantly between boys and girls, or change with gestation. For the whole group the mean value for total hand length was 64.4 +/- 3.42 mm, middle finger length 37.1 +/- 2.91 mm, palmar length 27.4 +/- 2.15 mm, finger index 0.425 +/- 0.03 and palmar index 0.58 +/- 0.03. A comparison with published measurements for newborns of different racial origin shows significant differences for the total hand length, middle finger length and palm length from Indian and Jewish infants, but not from Japanese infants. The indices were similar in Malay, Indian, Jewish and Japanese newborn infants.  相似文献   

10.
Dermatoglyphic features of 52 male patients with borderline personality disorder (BPD) were compared with those of 200 male controls (control group-CG) and 195 males with schizophrenia (SCH). Quantitative analysis showed statistically significant differences between BPD-CG and between BPD-SCH, mainly regarding the palmar traits, but also the 5th, the 4th and the 1st finger of the right hand as well as the 5th and the 4th finger of the left hand between BPD and SCH patients. The canonical discriminant analysis permitted correct classification with 69.84% probability between the BPD and CG and with 76.11% probability between the BPD and the SCH group. Qualitative finger and palmar traits analysis showed differences between the BPD and SCH groups on the 3rd finger of the left hand, total frequency for all fingers and in the III interdigital space. Significant differences between the BPD and CG were found on the 3rd finger of the left hand. Our results show that the dermatoglyphic features of BPD differ from those of schizophrenia and from those of control subjects. The possible significance of these findings is discussed.  相似文献   

11.
Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5° rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10°), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging.  相似文献   

12.
Dynamic characteristics of a manual task can affect the control of hand muscles due to the difference in biomechanical/physiological characteristics of the muscles and sensory afferents in the hand. We aimed to examine the effects of task dynamics on the coordination of hand muscles, and on the motor adaptation to external assistance. Twenty-four healthy subjects performed one of the two types of a finger extension task, isometric dorsal fingertip force production (static) or isokinetic finger extension (dynamic). Subjects performed the tasks voluntarily without assistance, or with a biomimetic exotendon providing targeted assistance to their extrinsic muscles. In unassisted conditions, significant between-task differences were found in the coordination of the extrinsic and intrinsic hand muscles, while the extrinsic muscle activities were similar between the tasks. Under assistance, while the muscle coordination remained relatively unaffected during the dynamic task, significant changes in the coordination between the extrinsic and intrinsic muscles were observed during the static task. Intermuscular coherence values generally decreased during the static task under assistance, but increased during the dynamic task (all p-values < 0.01). Additionally, a significant change in the task dynamics was induced by assistance only during static task. Our study showed that task type significantly affect coordination between the extrinsic and intrinsic hand muscles. During the static task, a lack of sensory information from musculotendons and joint receptors (more sensitive to changes in length/force) is postulated to have resulted in a neural decoupling between muscles and a consequent isolated modulation of the intrinsic muscle activity.  相似文献   

13.
The eye-hand span (EHS) is the separation between eye position and hand position when sight-reading music. It can be measured in two ways: in notes (the number of notes between hand and eye; the 'note index'), or in time (the length of time between fixation and performance; the 'time index'). The EHSs of amateur and professional pianists were compared while they sight-read music. The professionals showed significantly larger note indexes than the amateurs (approximately four notes, compared to two notes), and all subjects showed similar variability in the note index. Surprisingly, the different groups of pianists showed almost identical mean time indexes (ca. 1 s), with no significant differences between any of the skill levels. However, professionals did show significantly less variation than the amateurs. The time index was significantly affected by the performance tempo: when fast tempos were imposed on performance, all subjects showed a reduction in the time index (to ca. 0.7 s), and slow tempos increased the time index (to ca. 1.3 s). This means that the length of time that information is stored in the buffer is related to performance tempo rather than ability, but that professionals can fit more information into their buffers.  相似文献   

14.
We evaluated the asymmetric hand measurements in right- and left-handed individuals. 343 men and 290 women aged 18-42 years (22.11 +/- 2.07) participated in the study. There were no statistically significant differences when right-left differences in hand length, third finger length, palmar length, and the digit index value were evaluated according to hand preference and sex. Statistically significant differences were found for right-left differences in hand width, hand-shape index, and the palmar length/width according to hand preference. The strong left-handers, weak left-handers, and ambidextrous individuals in the study group all exhibited asymmetry favoring the left and were considered together. Similarly, the strong and weak right-handers exhibited asymmetry favoring the right hand and were considered together. The difference between these two groups was significant. When the data were evaluated according to sex, significant differences were found between the subgroups. In particular, right-left differences in the hand-shape index and palmar length/width values of the strong left-handers, weak left-handers, and ambidextrous individuals were found to be statistically significant according to sex; in contrast, the strong and weak right-handers showed no significant differences according to sex. These results suggest a relation of hand asymmetry to hand preference in a Turkish population.  相似文献   

15.
The aim of this study was to compare the upper-limb kinematics and coordination of the short grip and classic drives in field hockey. Ten elite female players participated in the experiment. The VICON system was used to record the displacement of markers placed on the stick and the players' joints during five short grip and five classic drives. Kinematic and coordination parameters were analyzed. The ball's velocity was recorded by a radar device that also served as the drive target. Kinematic differences were noted between the two drive conditions, with shorter duration and smaller overall amplitude in the short grip drive, explained by the shorter lever arm and the specific context in which it is used. No differences were noted for upper-limb coordination. In both types of stick holding, an interlimb dissociation was noted on the left side, whereas the right interlimb coordination was in phase. Moreover, the time lag increased in the disto-proximal direction, suggesting wrist uncocking before impact and the initiation of descent motion by the left shoulder. Mediolateral analysis confirmed these results: coordination of left-right limbs converged at the wrist but dissociated with more proximal joints (elbows and shoulders).  相似文献   

16.
This study investigates prehension in 20 tufted capuchins (Cebus apella) in a reaching task requiring individuals to grasp a small food item fixed to a tray. The aim was twofold: 1) to describe capuchins' grasping techniques in detail, focusing on digit movements and on different areas of contact between the grasping fingers; and 2) to assess the relationship between grip types and manual laterality in this species. Capuchins picked up small food items using a wide variety of grips. In particular, 16 precision grip variants and 4 power grip variants were identified. The most frequently used precision grip involved the distal lateral areas of the thumb and the index finger, while the most preferred kind of power grip involved the thumb and the palm, with the thumb being enclosed by the other fingers. Immature capuchins picked up small food items using power grips more often than precision grips, while adult individuals exhibited no significant preference for either grip type. The analysis performed on the time capuchins took to grasp the food and withdraw it from the tray hole revealed that 1) precision grips were as efficient as power grips; 2) for precision grips, the left hand was faster than the right hand; and 3) for power grips, both hands were equally quick. Hand preference analysis, based on the frequency for the use of either hand for grasping actions, revealed no significant hand bias at group level. Likewise, there was no significant relationship between grip type and hand preference.  相似文献   

17.
Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function.  相似文献   

18.
The purpose of this study was to determine whether any relationships exist between hand locomotor functions and dermatoglyphic characteristics and body structure. The pilot sample consisted of 71 adult normal individuals (30 males and 41 females). The locomotor function tests included a power grip and two precision grips; dermatoglyphic features were represented by finger and palmar pattern intensities and ridge counts, and body structure by 35 head, face, trunk, and limb anthropometric measurements. Univariate and multivariate correlation analyses reveal that on average half of the variance in the locomotor hand-function tests can be accounted for by a set of body and/or dermatoglyphic variables in males; this contribution is appreciably lower in females. Body longitudinal measurements and some facial measures, such as jaw length, were found to be the main correlates of either a power grip or a simple thumb-index squeeze, especially in males; head and face measurements and the size and intensity of patterns on fingers 1 and 2 were the main correlates of more complex precision tests involving complicated manipulation of objects using the thumb and index finger. These preliminary results identify some previously unknown sources of variation in dermatoglyphic patterns and contribute to a better understanding of the evolutionary aspects of the relationships between specific functional and morphologic traits in humans.  相似文献   

19.
Most trigger digit (TD) patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies.  相似文献   

20.
Predicting the hand and fingers posture during grasping tasks is an important issue in the frame of biomechanics. In this paper, a technique based on neural networks is proposed to learn the inverse kinematics mapping between the fingertip 3D position and the corresponding joint angles. Finger movements are obtained by an instrumented glove and are mapped to a multichain model of the hand. From the fingertip desired position, the neural networks allow predicting the corresponding finger joint angles keeping the specific subject coordination patterns. Two sets of movements are considered in this study. The first one, the training set, consisting of free fingers movements is used to construct the mapping between fingertip position and joint angles. The second one, constructed for testing purposes, is composed of a sequence of grasping tasks of everyday-life objects. The maximal mean error between fingertip measured position and fingertip position obtained from simulated joint angles and forward kinematics is 0.99+/-0.76mm for the training set and 1.49+/-1.62mm for the test set. Also, the maximal RMS error of joint angles prediction is 2.85 degrees and 5.10 degrees for the training and test sets respectively, while the maximal mean joint angles prediction error is -0.11+/-4.34 degrees and -2.52+/-6.71 degrees for the training and test sets, respectively. Results relative to the learning and generalization capabilities of this architecture are also presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号