首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Thermoresponsive structures in the 5'-untranslated region of mRNA are known to control translation of heat shock and virulence genes. Expression of many rhizobial heat shock genes is regulated by a conserved sequence element called ROSE for repression of heat shock gene expression. This cis-acting, untranslated mRNA is thought to prevent ribosome access at low temperature through an extended secondary structure, which partially melts when the temperature rises. We show here by a series of in vivo and in vitro approaches that ROSE is a sensitive thermometer responding in the physiologically relevant temperature range between 30 and 40 degrees C. Point mutations predicted to disrupt base pairing enhanced expression at 30 degrees C. Compensatory mutations restored repression, emphasizing the importance of secondary structures in the sensory RNA. Only moderate inducibility of a 5'-truncated ROSE variant suggests that interactions between individual stem loops coordinate temperature sensing. In the presence of a complementary oligonucleotide, the functionally important stem loop of ROSE was rendered susceptible to RNase H treatment at heat shock temperatures. Since major structural rearrangements were not observed during UV and CD spectroscopy, subtle structural changes involving the Shine-Dalgarno sequence are proposed to mediate translational control. Temperature perception by the sensory RNA is an ordered process that most likely occurs without the aid of accessory factors.  相似文献   

4.
FourU: a novel type of RNA thermometer in Salmonella   总被引:2,自引:1,他引:1  
  相似文献   

5.
Only recently, the fundamental role of regulatory RNAs in prokaryotes and eukaryotes has been appreciated. We developed a pipeline from bioinformatic prediction to experimental validation of new RNA thermometers. Known RNA thermometers are located in the 5′-untranslated region of certain heat shock or virulence genes and control translation by temperature-dependent base pairing of the ribosome binding site. We established the searchable database RNA-SURIBA (Structures of Untranslated Regions In BActeria). A structure-based search pattern reliably recognizes known RNA thermometers and predicts related structures upstream of annotated genes in complete genome sequences. The known ROSE1 (Repression Of heat Shock gene Expression) thermometer and several other functional ROSE-like elements were correctly predicted. For further investigation, we chose a new candidate upstream of the phage shock gene D (pspD) in the pspABCDE operon of E. coli. We established a new reporter gene system that measures translational control at heat shock temperatures and we demonstrated that the upstream region of pspD does not confer temperature control to the phage shock gene. However, translational efficiency was modulated by a point mutation stabilizing the predicted hairpin. Testing other candidates by this structure prediction and validation process will lead to new insights into the requirements for biologically active RNA thermometers. The database is available on . Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
9.
10.
Thermoregulation of virulence genes in bacterial pathogens is essential for environment-to-host transition. However, the mechanisms governing cold adaptation when outside the host remain poorly understood. Here, we found that the production of cold shock proteins CspB and CspC from Staphylococcus aureus is controlled by two paralogous RNA thermoswitches. Through in silico prediction, enzymatic probing and site-directed mutagenesis, we demonstrated that cspB and cspC 5′UTRs adopt alternative RNA structures that shift from one another upon temperature shifts. The open (O) conformation that facilitates mRNA translation is favoured at ambient temperatures (22°C). Conversely, the alternative locked (L) conformation, where the ribosome binding site (RBS) is sequestered in a double-stranded RNA structure, is folded at host-related temperatures (37°C). These structural rearrangements depend on a long RNA hairpin found in the O conformation that sequesters the anti-RBS sequence. Notably, the remaining S. aureus CSP, CspA, may interact with a UUUGUUU motif located in the loop of this long hairpin and favour the folding of the L conformation. This folding represses CspB and CspC production at 37°C. Simultaneous deletion of the cspB/cspC genes or their RNA thermoswitches significantly decreases S. aureus growth rate at ambient temperatures, highlighting the importance of CspB/CspC thermoregulation when S. aureus transitions from the host to the environment.  相似文献   

11.
12.
Altering the rate of translation initiation of a specific gene can tightly regulate the synthesis of the corresponding polypeptide and is an important mechanism in the control of gene expression. For some time it has been known that many genes involved in cell proliferation, cell growth and apoptosis have atypical 5' untranslated regions (UTRs) containing a high degree of RNA secondary structure, upstream open reading frames and internal ribosome entry segments. These features play a key role in the regulation of protein synthesis. In this review we discuss how the rate of translation initiation of proto-oncogenes and tumour suppressor genes is affected by elements in their 5' and 3' UTRs and we focus on how changes in the controlof gene expression at this level can contribute towards tumorigenesis.  相似文献   

13.
14.
15.
16.
Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 3′ untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 3′ UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 3′ UTR is more accessible to mediators that promote its interaction with the basal translation components at the 5′ end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 5′ UTR, since a hairpin structure abolishes expression of a fused reporter gene.  相似文献   

17.
18.
One of the effects of a temperature increase above 35 degrees C on Drosophila melanogaster is a rapid switch in selectivity of the translational apparatus. Protein synthesis from normal, but not from heat shock, mRNA is much reduced. Efficient translation at high temperature might be a result of the primary sequence of heat shock genes. Alternatively a mRNA modification mechanism, altered as a consequence of heat shock, might allow for efficient high temperature translation of any mRNA synthesized during a heat shock. The gene for alcohol dehydrogenase (Adh) was fused to the controlling elements of a heat shock protein 70 (hsp70) gene. Authentic Adh mRNA, synthesized from this fusion gene at elevated temperatures was not translated during heat shock. A second Adh fusion gene in which the mRNA synthesized contained the first 95 nucleotides of the Hsp70 non-translated leader sequence gave rise, at high temperature, to mRNA which was translated during the heat shock. Thus, the signal(s) in the mRNAs controlling translation efficiency at heat shock temperatures is encoded within the heat shock genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号