首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of relative maternal undernutrition on growth, endocrinology, and metabolic status in the adolescent ewe and her fetus were investigated at Days 90 and 130 of gestation. Singleton pregnancies to a single sire were established, and thereafter ewes were offered an optimal control (C; n = 14) or low (L [0.7 x C]; n = 21) dietary intake. Seven ewes receiving the L intake were switched to the C intake on Day 90 of gestation (L-C). At Day 90, live weight and adiposity score were reduced (P < 0.001) in L versus C dams. Plasma insulin and IGF1 concentrations were decreased (P < 0.02), whereas glucose concentrations were preserved in L relative to C intake dams. Fetal and placental mass was independent of maternal nutrition at this stage. By Day 130 of gestation, when compared to C and L-C dams, maternal adiposity was further depleted in L intake dams; concentrations of insulin, IGF1, and glucose were reduced; and nonesterified fatty acids increased. At Day 130, placental mass remained independent of maternal nutrition, but body weight was reduced (P < 0.01) in L compared with C fetuses (3555 g vs. 4273 g). Body weight was intermediate (3836 g) in L-C fetuses. Plasma glucose (P < 0.03), insulin (P < 0.07), and total liver glycogen content (P < 0.04) were attenuated in L fetuses. Fetal carcass analyses revealed absolute reductions (P < 0.05) in dry matter, crude protein, and fat, and a relative (g/kg) increase in carcass ash (P < 0.01) in L compared with C fetuses. Thus, limiting maternal intake during adolescent pregnancy gradually depleted maternal body reserves, impaired fetal nutrient supply, and slowed fetal soft tissue growth.  相似文献   

2.
Using a mid- to late-gestation ovine model of intrauterine growth restriction (IUGR), we examined uteroplacental blood flow and fetal growth during melatonin supplementation as a 2 × 2 factorial design. At day 50 of gestation, 32 ewes were supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and were allocated to receive 100% [adequate; (ADQ)] or 60% [restricted (RES)] of nutrient requirements until day 130 of gestation. Umbilical artery blood flow was increased from day 60 to day 110 of gestation in MEL vs. CON dams, while umbilical artery blood flow was decreased from day 80 to day 110 of gestation in RES vs. ADQ dams. At day 130 of gestation, uteroplacental hemodynamics, measured under general anesthesia, and fetal growth were evaluated. Uterine artery blood flow was decreased in RES vs. ADQ dams, while melatonin supplementation did not affect uterine artery blood flow. Total placentome weight and placentome number were not different between treatment groups. Fetal weight was decreased by nutrient restriction. Abdominal girth and ponderal index were increased in fetuses from MEL-ADQ dams vs. all other groups. Fetal biparietal distance was decreased in CON-RES vs. CON-ADQ dams, while melatonin supplementation rescued fetal biparietal distance. Fetal kidney length and width were increased by maternal melatonin treatment. Fetal cardiomyocyte area was altered by both maternal melatonin treatment and nutritional plane. In summary, melatonin may negate the consequences of IUGR during specific abnormalities in umbilical blood flow as long as sufficient uterine blood perfusion is maintained during pregnancy.  相似文献   

3.
The insulin-like growth factors (IGF-I and -II) are potential mediators of the effects of maternal undernutrition on fetal growth and muscle development. The effects of a 40% reduction in maternal feed intake on serum levels of the IGFs, the thyroid hormones and cortisol, were investigated for the last two trimesters (day 25 to birth). This level of undernutrition is known to cause a 35% reduction in fetal and placental weights, and a 20-25% reduction in muscle fibre number. Maternal IGF-I level was greater than non-pregnant levels on day 25 gestation, in both control and restricted dams, and declined with gestational age. The increase in IGF-I level in the 40% restricted group was approximately two-thirds that of control animals. Fetal serum IGF-I was also reduced in undernourished fetuses throughout gestation. Maternal IGF-II did not change with gestational age and was unaffected by undernutrition. Fetal IGF-II reached a peak at day 55 of gestation, this peak was greatly diminished by maternal feed restriction. Both IGF-I and IGF-II tended to be related to fetal, placental and muscle weights at day 65 of gestation. Thyroid hormone concentration declined in maternal serum and increased in fetal serum with increasing gestational age. Levels were not significantly affected by undernutrition. Both triiodothyronine (T3) and thyroxine (T4) were correlated with IGF-I in maternal serum (P < 0.05), but not in fetal serum. Cortisol levels were elevated by undernutrition in both maternal and fetal serum, and increased with gestational age. Cortisol was inversely correlated with serum IGF-I in both maternal and fetal serum. Maternal serum IGF-I may mediate the effects of undernutrition on fetal growth by affecting the growth and establishment of the feto-placental unit in mid-gestation. Fetal IGF-I may mediate the effects on muscle growth, whereas IGF-II seems to be related to hepatic glycogen deposition. Cortisol may play a role via its effect on the IGFs, but the thyroid hormones are unlikely to be important until the late gestation/early postnatal period.  相似文献   

4.

Background

Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD). The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.

Methodology/Principal Findings

Using the outbred Sprague-Dawley (SD) and inbred Brown Norway (BN) rat strains as well as their reciprocal crosses, we administered ethanol (E), pair-fed (PF), or control (C) diets to the pregnant dams. The dams'' plasma levels of free thyroxine (fT4), triiodothyronine (T3), free T3 (fT3), and thyroid stimulating hormone (TSH) were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21) to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.

Conclusions

SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding). In summary, these novel findings demonstrate both maternal and paternal genetic contributions to in utero vulnerability to alcohol, refining our understanding of the genetically-based heterogeneity seen in human FASD.  相似文献   

5.
Zinc deficiency (ZD) is teratogenic in rats, and fetal skeletal defects are prominent. This study identifies fetal skeletal malformations that affect calcified and non-calcified bone tissue as a result of gestational zinc deficiency in rats, and it assesses the effect of maternal ZD in fetal bone calcification. Pregnant Sprague-Dawley rats (180-250 g) were fed 1) a control diet (76.4 micrograms Zn/g diet) ad libitum (group C), 2) a zinc-deficient diet (0 microgram/g) ad libitum (group ZD), or 3) the control diet pair-fed to the ZD rats (group PF). On day 21 of gestation, laparotomies were performed. Fetuses were weighed, examined for external malformations, and stained in toto with a double-staining technique for the study of skeletal malformations. Maternal and fetal tissues were used for Zn, Mg, Ca, and P determinations. Gross external malformations were present in 97% of the ZD fetuses. No external malformations were found in fetuses from groups C and PF. Ninety-one percent of cleared ZD fetuses had multiple skeletal malformations, whereas only 3% of the fetuses of group PF had skeletal defects; no skeletal malformations were found in fetuses from group C. Some of the skeletal malformations described in the ZD fetuses, mainly affecting non-calcified bone, were not mentioned in previous reports, thus stressing the importance of using double-staining techniques. Examination of stained fetuses and counting of ossification centers revealed important calcification defects in ZD fetuses. These effects were confirmed by lower Ca and P concentrations in fetal bone with alteration of the Ca:P ratio.  相似文献   

6.
The effect of varying short-term maternal feed intake during the peri-conception period on the development of ovine fetal muscle at mid-gestation was investigated. Superovulated donor Merino ewes (n = 24) were fed a roughage/grain pelleted diet (10.1 MJME/kg dry matter) at either 1.5x maintenance (H; high) or 0.5x maintenance (L; low) from 18 days before until 6 days after ovulation. Embryos were transferred to recipient ewes (n = 60) on day 6. Singleton fetuses were collected on day 75 of gestation and placental weights, fetal body dimensions and fetal organ and muscle weights recorded. The number, type and size of muscle fibres and the dry matter, RNA, DNA and protein content in the semitendinosus muscle were determined. Maternal feed intake did not influence body dimensions, organ development or muscle weights in the fetus. However, L feed intake decreased total muscle fibre number in the fetus by approximately 20% (P = 0.06) compared to H feed intake. This resulted from a reduced secondary to primary fibre ratio (P < 0.05) and indicated that secondary fibre formation occurred at a reduced rate in L fetuses. In addition, protein:DNA ratio tended to be lower in muscles of L fetuses (P < 0.1). It is concluded that restricting feed intake over the peri-conception period reduces or delays myogenesis in fetal sheep. The potential mechanisms by which nutritional availability during this period may influence subsequent myogenic development are discussed.  相似文献   

7.
Bone formation and loss are related to the strain imposed on bone by muscle forces. Bone mineral content (BMC) and lean mass (LM) of fetal lambs was determined at day 140 of pregnancy in 8 groups of ewes, which were of either large or small body size, on either high (ad libitum) or maintenance pasture intake from day 21 of pregnancy, or carrying either singletons or twins. BMC and LM (using DXA scanning) of fetal hindquarters/spine were corrected to leg length. BMC and LM were less in twin than singleton groups (P < 0.001). Large ewes on high intake produced single fetuses with a (group mean) BMC/LM ratio that was higher (P < 0.002) than that in fetuses of large ewes with singletons on maintenance intake or twins on either high or maintenance intakes, the ratios of which were not different. In single fetuses from small ewes on high intake, the BMC/LM ratio was higher than those from small ewes with singletons on maintenance intake or twins on either high or maintenance intakes, the ratios of which were not different. The ratio was not different in singleton fetuses of ewes on high intake, whether they were large or small. Different fetal environments resulted in a given amount of muscle being associated with a higher or lower bone mass. Dietary intake during pregnancy was more important than maternal size in affecting the ratio. We conclude that intrauterine environmental factors may be important in determining bone mass postnatally, and possibly later in life.  相似文献   

8.
The effect of maternal nutrition level during the periconception period on the muscle development of fetus and maternal–fetal plasma hormone concentrations in sheep were examined. Estrus was synchronized in 55 Karayaka ewes and were either fed ad libitum (well-fed, WF, n=23) or 0.5×maintenance (under-fed, UF, n=32) 6 days before and 7 days after mating. Non-pregnant ewes (WF, n=13; UF, n=24) and ewes carrying twins (WF, n=1) and female (WF, n=1; UF, n=3) fetuses were removed from the experiment. The singleton male fetuses from well-fed (n=8) and under-fed (n=5) ewes were collected on day 90 of gestation and placental characteristics, fetal BWs and dimensions, fetal organs and muscles weights were recorded. Maternal (on day 7 after mating) and fetal (on day 90 of pregnancy) blood samples were collected to analyze plasma hormone concentrations. Placental characteristics, BW and dimensions, organs and muscles weights of fetuses were not affected by maternal feed intake during the periconception period. Maternal nutrition level did not affect fiber numbers and the muscle cross-sectional area of the fetal longissimus dorsi (LD), semitendinosus (ST) muscles, but the cross-sectional area of the secondary fibers in the fetal LD and ST muscles from the UF ewes were higher than those from the WF ewes (P<0.05). Also, the ratio of secondary to primary fibers in the ST muscle were tended to be lower in the fetuses from the UF ewes (P=0.07). Maternal nutrition level during the periconception period did not cause any significant changes in fetal plasma insulin and maternal and fetal plasma IGF-I, cortisol, progesterone, free T3 and T4 concentrations. However, maternal cortisol concentrations were lower while insulin concentrations were higher in the WF ewes than those in the UF ewes (P<0.05). These results indicate that the reduced maternal feed intake during the periconception period may alter muscle fiber diameter without affecting fiber types, fetal weights and organ developments and plasma hormone concentrations in the fetus.  相似文献   

9.
Objective: To investigate the effect of maternal dietary ω‐3 polyunsaturated fatty acid (PUFA) deficiency and repletion on food appetite signaling. Research Methods and Procedures: Sprague‐Dawley rat dams were maintained on diets either supplemented with (CON) or deficient in (DEF) ω‐3 PUFA. All offspring were raised on the maternal diet until weaning. After weaning, two groups remained on the respective maternal diet (CON and DEF groups), whereas a third group, born of dams fed the DEF diet, were switched to the CON diet (REC). Experiments on food intake began when the male rats reached 16 weeks of age. Food intake was stimulated either by a period of food restriction, by blocking glucose utilization (by 2‐deoxyglucose injection), or by blocking β‐oxidation of fatty acids (by β‐mercaptoacetate injection). Results: DEF animals consumed more than CON animals in response to all stimuli, with the greatest difference (1.9‐fold) demonstrated following administration of 2‐deoxyglucose. REC animals also consumed more than CON animals in response to food restriction and 2‐deoxyglucose but not to β‐mercaptoacetate. Discussion: These findings indicate that supply of ω‐3 PUFA, particularly during the perinatal period, plays a role in the normal development of mechanisms controlling food intake, especially glucoprivic (i.e. reduced glucose availability) appetite signaling. Dietary repletion of ω‐3 PUFA from 3 weeks of age restored intake responses to fatty acid metabolite signaling but did not reverse those in response to food restriction or glucoprivic stimuli.  相似文献   

10.
Inadequate magnesium (Mg) intake is a widespread problem, with over 50% of women of reproductive age consuming less than the Recommended Dietary Allowance (RDA). Because pregnancy increases the requirement for Mg and the beneficial effects of magnesium sulfate for preeclampsia/eclampsia and fetal neuroprotection are well described, we examined the outcomes of Mg deficiency during pregnancy. Briefly, pregnant Swiss Webster mice were fed either control or Mg-deficient diets starting on gestational day (GD) 6 through euthanasia on GD17. Mg-deficient dams had significantly reduced weight gain and higher plasma adipokines, in the absence of inflammation. Livers of Mg-deficient dams had significantly higher saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) and lower polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) (P < 0.0001) and arachidonic acid (AA) (P < 0.0001). Mechanistically, Mg deficiency was accompanied by enhanced desaturase and elongase mRNA expression in maternal livers along with higher circulating insulin and glucose concentrations (P < 0.05) and increased mRNA expression of Srebf1 and Chrebp, regulators of fatty acid synthesis (P < 0.05). Fetal pups exposed to Mg deficiency were growth-restricted and exhibited reduced survival. Mg-deficient fetal livers showed lower MUFAs and higher PUFAs, with lower desaturase and elongase mRNA expression than controls. In addition, DHA concentrations were lower in Mg-deficient fetal brains (P < 0.05). These results indicate that Mg deficiency during pregnancy influences both maternal and fetal fatty acid metabolism, fetal growth and fetal survival, and support better understanding maternal Mg status before and during pregnancy.  相似文献   

11.
FIOROTTO, MARTA L, TERESA A DAVIS, PATRICIA SCHOKNECHT, HARRY J MERSMANN AND WILSON G POND. Both maternal over- and undernutrition during gestation increase the adiposity of young adult progeny in rats. ObesRes. 1995;3:131–141. We examined the influence of maternal diet during gestation on the growth and body composition of the progeny. On day 1 of gestation, rat dams were assigned to one of four feeding regimens: free access to standard rodent chow throughout gestation (AL); 20 g feed/day (prebreeding intake) throughout gestation (PB); 10 g feed/day from day 1 to day 14, then ad libitum from day 15 to parturition (RAL); 10 g feed/day from day 1 to 14, then 20 g/day to parturition (RPB). Progeny were fed ad libitum on standard chow diet from 3 to 12 weeks of age; food intake and weight gain were measured over this time. Body composition was measured at 12 weeks. The PB regimen restricted maternal food intake during the third trimester only; the RAL regimen restricted intake by 50% for two trimesters and produced hyperphagia in the third; the RPB regimen restricted intake by 50% for two trimesters, then intake (per unit body weight) was similar to that of AL dams during the third trimester. Litter size and progeny birth, weaning, and 12-week body weights were similar among the four groups. At 12 weeks of age, PB progeny had the highest body fat (per kg fat-free mass), despite similar feed intake during the 9-week postweaning period. The increased fat was proportionally distributed among intra-abdominal and subcutaneous depots. Progeny of RAL, AL, and RPB dams had similar amounts of body fat, but in RAL progeny more fat was present in intra-abdominal depots. The weights of fat-free mass, gastrointestinal tract and hindlimb skeletal muscles were unaffected by maternal diet Restriction of maternal feed intake during the third week of gestation had subtle effects on the body composition of young adult progeny that could not be explained on the basis of differences in postweaning voluntary feed intake.  相似文献   

12.
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the fetal expression of testicular cytochrome P450 17 (CYP17), one of the enzymes necessary for sex steroid synthesis, was studied in Wistar rats. Fetal testicular CYP17 exhibited reduced mRNA and protein levels following exposure of the dams at gestational day 15 to 1 microg/kg TCDD. In support of this, CYP17 activity catalyzed by fetal testis homogenate was also reduced by maternal exposure to TCDD. The reduction in CYP17 expression seemed to be specific for fetal stages, because 7 day-old pups born from TCDD-treated dams did not exhibit any reduction in CYP17. In sharp contrast to the in vivo observations, TCDD failed to reduce CYP17 expression in cultured fetal testis, although CYP17 could be induced by activating cAMP-dependent signaling. To assess the role of pituitary luteinizing hormone (LH) on TCDD-induced reduction in fetal testicular CYP17, a further investigation was performed to examine whether the direct injection of LH into fetuses restores the altered CYP17 expression. The results showed that in utero injection of equine chorionic gonadotropin, an LH-mimicking hormone, completely abolishes the TCDD-produced reduction in fetal CYP17. However, neither the alpha- nor beta-subunits of LH in cultured fetal pituitary was reduced by TCDD. These results suggest that 1) maternal exposure to TCDD impairs the expression of testicular CYP17 in a fetal stage-specific manner; 2) this effect is due, at least partially, to a TCDD-produced reduction in circulating LH; and 3) TCDD exerts such an effect by affecting the upstream mechanism regulating the pituitary synthesis of LH.  相似文献   

13.
Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.  相似文献   

14.
This study investigated the effects of voluntary wheel running on the myosin heavy chain (MHC) composition of the soleus (Sol) and plantaris muscles (Pla) in rats developing under hypobaric choronic hypoxia (CH) conditions during 4 wk in comparison with those of control rats maintained under local barometric pressure conditions (C) or rats pair-fed an equivalent quantity of food to that consumed by CH animals (PF). Compared with C animals, sedentary rats subjected to CH conditions showed a significant decrease in type I MHC in Sol (-12%, P < 0.01). Although strongly decreased under hypoxia, spontaneous running activity increased the expression of type I MHC (P < 0.01) so that no difference in the MHC profile of Sol was shown between CH active and C active rats. The MHC distribution in Sol of PF rats was not significantly different from that found in C animals. CH resulted in a significant decrease in type I (P < 0.01) and type IIA (P < 0.005) MHC, concomitant with an increase in type IIB MHC in Pla (P < 0.001), compared with C and PF animals. In contrast to results in Sol muscle, this slow-to-fast shift in the MHC profile was unaffected by spontaneous running activity. These results suggest that running exercise suppresses the hypoxia-induced slow-to-fast transition in the MHC expression in Sol muscles only. The hypoxia-induced decrease in food intake has no major influence on MHC expression in developing rats.  相似文献   

15.
Umbilical arterial and venous blood, and fetal testes were taken from 38 bovine fetuses at 90, 180 or 260 days of gestation. Concurrently blood also was taken from the jugular, and from the uterine artery and vein of the dams. Testosterone and androstenedione were determined by radioimmunoassays. Fetal testicular homogenates had 0.96 and 0.35 mug/g of testosterone and 0.39 and 0.50 mug/g of androstenedione at 180 and 260 days of gestation, respectively. Males had five to tenfold more serum testosterone and about twofold more androstenedione than female fetuses at each trimester of gestation. Male fetal blood testosterone decreased (P less than 0.01) from 2.7 to 0.3 ng/ml between 90 and 260 days of gestation. But, maternal testosterone and androstenedione increased (P less than 0.05) during gestation in cows with males, but not in cows with female fetuses. Testosterone was higher (P less 0.05) in cows carrying males than in cows with female fetuses. Androstenedione was higher in blood leaving the placenta on both the maternal and on the vetal sides suggesting placental synthesis of androstenedione.  相似文献   

16.
Fetal volume control is driven by an equilibrium between fetal and maternal hydrostatic and oncotic pressures in the placenta. Renal contributions to blood volume regulation are minor because the fetal kidneys cannot excrete fluid from the fetal compartment. We hypothesized that an increase in fetal plasma protein would lead to an increase in plasma oncotic pressure, resulting in an increase in fetal arterial and venous pressures and decreased angiotensin levels. Plasma or lactated Ringer solution was infused into each of five twin fetuses. After 7 days, fetal protein concentration was 71.2 +/- 4.2 g/l in the plasma-infused fetuses compared with 35.7 +/- 6.3 g/l in the lactated Ringer-solution-infused fetuses. Arterial pressure was 68.0 +/- 3.6 compared with 43.4 +/- 1.9 mmHg in the lactated Ringer solution-infused fetuses (P < 0.0003), whereas venous pressure was 4.8 +/- 0.3 mmHg in the plasma-infused fetuses compared with 3.3 +/- 0.4 mmHg in the lactated Ringer solution-infused fetuses (P < 0.036). Six fetuses were studied on days 0, 7, and 14 of plasma protein infusion. Fetal protein concentration increased from 31.1 +/- 1.5 to 84.8 +/- 3.8 g/l after 14 days (P < 0.01), and arterial pressure increased from 43.1 +/- 1.8 to 69.1 +/- 4.1 mmHg (P < 0.01). Venous pressure increased from 3.0 +/- 0.4 to 6.2 +/- 1.3 mmHg (P < 0.05). Fetal heart rate did not change. Angiotensin II concentration decreased, from 24.6 +/- 5.6 to 2.9 +/- 1.3 pg/l, after 14 days (P < 0.01). Fetal plasma infusions resulted in fetal arterial and venous hypertensions that could not be corrected by reductions in angiotensin II levels.  相似文献   

17.
Fifty-six castrated male progeny of crossbred (Chester White x Landrace x Large White x Yorkshire) dams fed an adequate diet (control, C), a control diet fed at one-third of C (restricted, R), or diets severely deficient in protein (PF) or restricted in nonprotein calories (RCal) were killed at age 25 weeks. Dams were fed their respective diets in the following regimens: C, 1.8 kg (6000 kcal daily) throughout pregnancy; R, 0.6 kg of C diet daily for 70 days, then 1.8 kg of C daily to parturition at about 114 days; PF, 1.8 kg of a "protein-free" diet (less than 0.2% protein) throughout pregnancy; RCal, 0.6 kg daily (2000 kcal) of a diet containing three times the concentration of protein, minerals, and vitamins provided by the C diet for 70 days, then 1.8 kg of C daily to parturition. All dams were fed an adequate diet ad libitum through a 28-day lactation. Castrated male progeny were assigned to one of two replicates based on birth date and fed a corn-soybean meal diet ad libitum from weaning to age 25 weeks, supplemented from age 10 to 12 weeks with 0, 110, or 220 mg/kg of thyroprotein (iodinated casein). Cerebrum weight was unaffected by maternal diet, despite a significant (P less than 0.001) reduction in body weight of progeny of PF dams compared with other groups, resulting in a higher relative cerebrum weight in progeny of PF dams than in progeny of C, R, and RCal dams. Absolute and relative weights of RNA, DNA, and total protein in cerebrum were unaffected by maternal diet. Thyroprotein supplementation to the diet of the progeny had no effect on cerebrum weight or its protein or nucleic acid content. It is concluded that maternal protein deprivation but not restriction of feed or nonprotein calorie intake to one-third of recommended allowance during gestation results in stunting of body weight in young adult progeny but does not affect cerebrum weight, cerebrum cell number (DNA), or protein synthetic activity (RNA), or RNA-to-protein ratio.  相似文献   

18.
The purpose of this study was to investigate the influence of parental transgenerational genetics and maternal metabolic state on fetal maldevelopment in diabetic rat pregnancy. Rats from an inbred malformation-resistant (W) strain, and an inbred malformation-prone (L) strain, were cross-mated to produce two different F(1) hybrids, WL and LW. Normal (N) and manifestly diabetic (MD) WL and LW females were mated with normal males of the same F(1) generation to obtain WLWL and LWLW F(2) hybrids. Maternal diabetes increased malformation and resorption rates in both F(2) generations. MD-WLWL offspring had higher resorption rate but similar malformation rate compared with the MD-LWLW offspring. Malformed MD-WLWL offspring presented with 100% agnathia/micrognathia, whereas malformed MD-LWL offspring had 60% agnathia/micrognathia and 40% cleft lip and palate. The MD-WL dams showed increased β-hydroxybutyrate levels and alterations in concentrations of several amino acids (taurine, asparagine, citrulline, cystine, glutamic acid, leucine, tyrosine, and tryptophan) compared with MD-LW dams. Fetal glyceraldehyde-3-phosphate dehydrogenase (Gapdh) activity and gene expression were more altered in MD-WLWL than MD-LWLW. Fetal gene expression of reactive oxygen species (ROS) scavenger enzymes was diminished in MD-WLWL compared with MD-LWLW. Glial cell line-derived neurotrophic factor and Ret proto-oncogene gene expression was decreased in both MD-WLWL and MD-LWLW fetuses, whereas increased bone morphogenetic protein 4 and decreased Sonic hedgehog homolog expression was found only in MD-LWLW fetuses. Despite identical autosomal genotypes, the WL and LW dams gave birth to offspring with markedly different malformation patterns. Together with fetal differences in enzymatic activity and expression of Gapdh, ROS scavengers, and developmental genes, these results may suggest a teratological mechanism in diabetic pregnancy influenced by maternal metabolism and parental strain epigenetics.  相似文献   

19.
Limiting maternal nutrient intake during ovine adolescent pregnancy progressively depleted maternal body reserves, impaired fetal nutrient supply, and slowed fetal soft tissue growth. The present study examined placental growth, angiogenic gene expression, and vascular development in this undernourished adolescent model at Days 90 and 130 of gestation. Singleton pregnancies were established, and ewes were offered an optimal control (C; n = 14) or low (L [0.7 x C]; n = 21) dietary intake. Seven ewes receiving L intakes were switched to C intakes on Day 90 of gestation (L-C). Fetal body weight (P < 0.01) and glucose concentrations (P < 0.03) were reduced in L versus C pregnancies by Day 130, whereas L-C group values were intermediate. Placental cellular proliferation, gross morphology, and mass were independent of maternal nutrition at both Day 90 and 130. In contrast, capillary area density in the maternal caruncular portion of the placentome was reduced by 20% (P < 0.001) at both stages of gestation in L compared with C groups. Caruncular capillary area density was equivalent in the L and L-C groups at Day 130. Placental mRNA expression of five key angiogenic ligands or receptors increased (P < 0.001) between Days 90 and 130 of gestation. VEGFA mRNA expression was higher (P < 0.04) in L compared with C and L-C pregnancies at Day 130, but otherwise gene expression of the remaining angiogenic factors and receptors analyzed was unaffected by maternal intake. Undernourishing the pregnant adolescent dam restricts fetal growth independently of changes in placental mass. Alterations in maternal placental vascular development may, however, play a role in mediating the previously reported reduction in maternal and hence fetal nutrient supply.  相似文献   

20.
In sheep, parturition is initiated by increased fetal hypothalamic-pituitary-adrenal axis (HPAA) activity leading to PGE(2) and PGF(2alpha) production and a rise in the 17beta-estradiol-progesterone (E(2)/P(4)) ratio. Uteroplacental PG production can also increase fetal HPAA activity. Periconceptional maternal undernutrition accelerates fetal HPAA maturation resulting in preterm labor. We determined whether preterm labor was preceded by an increase in PG concentrations and E(2)/P(4) ratio and whether these increases preceded or followed the corresponding rise in cortisol concentrations. Singleton-bearing ewes were nourished ad libitum (N, n = 9) or undernourished (UN, n = 10) to reduce maternal weight by 15% from -61 days (d) to +30 d after mating with ad libitum intake thereafter. Paired maternal and fetal blood samples were collected from 126 d until delivery. Half the UN group delivered prematurely (>2 SD below mean gestation for the flock). PG and cortisol concentrations and E(2)/P(4) ratio increased before delivery in the same way in both groups. However, the increases occurred 7-10 d earlier in UN than in N animals. In both UN and N fetuses cortisol concentrations rose before fetal and maternal PG concentrations and maternal E(2)/P(4) ratio. Periconceptional maternal undernutrition induces preterm delivery in sheep by advancing the expected prepartum rise in cortisol and PG concentrations and E(2)/P(4) ratio. The rise in fetal cortisol concentration precedes the rise in fetal and maternal PG concentrations and maternal E(2)/P(4) ratio, suggesting that the underlying mechanism is likely to be acceleration of fetal HPAA maturation, resulting in initiation of the normal process of parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号