首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
Modulation of ISWI function by site-specific histone acetylation   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

7.
8.
9.
10.
11.
Despite differences in size and sequence, the two noncoding roX1 and roX2 RNAs are functionally redundant for dosage compensation of the Drosophila melanogaster male X chromosome. Consistent with functional conservation, we found that roX RNAs of distant Drosophila species could complement D. melanogaster roX mutants despite low homology. Deletion of a conserved predicted stem-loop structure in roX2, containing a short GUb (GUUNUACG box) in its 3' stem, resulted in a defect in histone H4K16 acetylation on the X chromosome in spite of apparently normal localization of the MSL complex. Two copies of the GUb sequence, newly termed the "roX box," were functionally redundant in roX2, as mutants in a single roX box had no phenotype, but double mutants showed reduced H4K16 acetylation. Interestingly, mutation of two of three roX boxes in the 3' end of roX1 RNA also reduced H4K16 acetylation. Finally, fusion of roX1 sequences containing a roX box restored function to a roX2 deletion RNA lacking its cognate roX box. These results support a model in which the functional redundancy between roX1 and roX2 RNAs is based, at least in part, on short GUUNUACG sequences that regulate the activity of the MSL complex.  相似文献   

12.
13.
14.
15.
16.
Gu W  Wei X  Pannuti A  Lucchesi JC 《The EMBO journal》2000,19(19):5202-5211
Dosage compensation in Drosophila is mediated by a multiprotein, RNA-containing complex that associates with the X chromosome at multiple sites. We have investigated the role that the enzymatic activities of two complex components, the histone acetyltransferase activity of MOF and the ATPase activity of MLE, may have in the targeting and association of the complex with the X chromosome. Here we report that MLE and MOF activities are necessary for complexes to access the various X chromosome sites. The role that histone H4 acetylation plays in this process is supported by our observations that MOF overexpression leads to the ectopic association of the complex with autosomal sites.  相似文献   

17.
18.
19.
20.
J. R. Bone  M. I. Kuroda 《Genetics》1996,144(2):705-713
In the fruitfly Drosophila melanogaster, the four male-specific lethal (msl) genes are required to achieve dosage compensation of the male X chromosome. The MSL proteins are thought to interact with cis-acting sites that confer dosage compensation to nearby genes, as they are detected at hundreds of discrete sites along the length of the polytene X chromosome in males but not in females. The histone H4 acetylated isoform, H4Ac16, colocalizes with the MSL proteins at a majority of sites on the D. melanogaster X chromosome. Using polytene chromosome immunostaining of other species from the genus Drosophila, we found that X chromosome association of MSL proteins and H4Ac16 is conserved despite differences in the sex chromosome karyotype between species. Our results support a model in which cis-acting regulatory sites for dosage compensation evolve on a neo-X chromosome arm in response to the degeneration of its former homologue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号