首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To find key genes essential for salt tolerance in the mangrove plant, Bruguiera sexangula, functional screening was performed using Escherichia coli as the host organism. A transformant expressing a cytosolic chaperonin-containing TCP-1alpha (CCTalpha) homologue displayed enhanced salt tolerance. Analysis in E. coli of the functional region revealed that a sequence of only 218 amino acids, containing the apical domain, is necessary for osmotolerance. Furthermore, this domain shows chaperone activity in vitro. Therefore, CCTalpha facilitates the folding of proteins without ATP or the cage-like structure, and may play an important role in stress tolerance, at least in B. sexangula.  相似文献   

2.
红树林耐盐相关基因转化水稻的研究   总被引:2,自引:0,他引:2  
运用农杆菌介导法将红树林耐盐相关基因mangrin转入粳稻品种‘日本晴’中,通过GUS基因检测愈伤组织转化率,确定农杆菌菌液浓度OD600为0.5,浸染时间30min,共培养时间3d为最佳转化体系;经潮霉菌筛选,获得抗性再生植株。通过PCR扩增检测、Southern blot分析和GUS基因活性检测,结果表明,mangrin基因整合到再生水稻的染色体DNA上。耐盐性测定结果表明,转基因植株在200mmol/L NaCl胁迫下,成活率保持在83.3%,株高增长20%~40%,mangrin基因能提高转基因水稻对盐胁迫的抗性。  相似文献   

3.
Sun M  Lo EY 《PloS one》2011,6(5):e19671
Biodiversity of mangrove ecosystems is difficult to assess, at least partly due to lack of genetic verification of morphology-based documentation of species. Natural hybridization, on the one hand, plays an important role in evolution as a source of novel gene combinations and a mechanism of speciation. However, on the other hand, recurrent introgression allows gene flow between species and could reverse the process of genetic differentiation among populations required for speciation. To understand the dynamic evolutionary consequences of hybridization, this study examines genomic structure of hybrids and parental species at the population level. In the Indo-West Pacific, Bruguiera is one of the dominant mangrove genera and species ranges overlap extensively with one another. Morphological intermediates between sympatric Bruguiera gymnorrhiza and Bruguiera sexangula have been reported as a variety of B. sexangula or a new hybrid species, B. × rhynchopetala. However, the direction of hybridization and extent of introgression are unclear. A large number of species-specific inter-simple sequence repeat (ISSR) markers were found in B. gymnorrhiza and B. sexangula, and the additive ISSR profiling of B. × rhynchopetala ascertained its hybrid status and identified its parental origin. The varying degree of scatterness among hybrid individuals in Principal Coordinate Analysis and results from NewHybrids analysis indicate that B. × rhynchopetala comprises different generations of introgressants in addition to F(1)s. High genetic relatedness between B. × rhynchopetala and B. gymnorrhiza based on nuclear and chloroplast sequences suggests preferential hybrid backcrosses to B. gymnorrhiza. We conclude that B. × rhynchopetala has not evolved into an incipient hybrid species, and its persistence can be explained by recurrent hybridization and introgression. Genomic data provide insights into the hybridization dynamics of mangrove plants. Such information can assist in biodiversity assessment by helping detect novel taxa and/or define species boundaries.  相似文献   

4.
海莲、秋茄两种红树群落能量的研究   总被引:18,自引:0,他引:18       下载免费PDF全文
 本文应用热值测定,对中国两种典型红树群落,即海南岛的海莲群落及福建九龙江口的秋茄群落样品热值、群落能量现存量、能量固定量以及太阳能转化效率进行了测定和分析.结果表明:(1)红树群落各组分样品之间热值有一定的差异;一般叶、花的热值较高,而根、树皮的热值较低。(2)群落能量现存量海莲群落(1984年1月)高达178,627kcal/m2,秋茄群落为70,547kcal/m2,群落能量在不同组分以及不同高度层次上均有不同的分配比。(3)海莲群落(1983)、秋茄群落(1982)能量年净固定量分别为15,772kcal/m2和10,456kcal/m2,相应地对林地太阳光合有效辐射能的转化效率依次为3.01%和2.01%;红树群落比其他植物群落具有较高的能量固定能力及太阳能转化效率。  相似文献   

5.
本文探讨了系列海水盐度砂培的红树植物秋茄和海莲幼苗叶片、根尖的过氧化物酶活性及其同工酶对不同盐度条件的反应。结果表明:(1)秋茄苗:在低盐度0‰至10‰范围,叶过氧化物酶活性随盐度提高而略有增强,15‰以上则降低;根尖过氧化物酶活性则不同,随盐度(0—35‰)提高而降低。(2)海莲苗:随其生长基盐度(5—25‰)提高,叶过氧化物酶活性迅速降低,而根尖过氧化物酶活性在5‰至10‰盐度时略有提高,15‰以上迅速降低;而后高盐度(25一35‰)活性降低不明显。这表明,在盐度的影响下,秋茄苗过氧化物酶活性变化程度小而海莲大。(3)在同工酶谱表现上,两种植物幼苗(叶,根)均为主级酶带受盐度影响不明显,但次级酶带对盐度敏感。  相似文献   

6.
2008年南方低温对我国红树植物的破坏作用   总被引:7,自引:1,他引:6       下载免费PDF全文
2008年初, 我国南方19个省经历了50年一遇的持续低温雨雪冰冻天气。极端气候对华南沿海各省的红树林区造成不同程度的危害。2008年3月, 在我国南方各省红树林区的10个代表性地点, 对这次寒害造成的红树植物伤害程度进行了系统的调查。结果表明: 冬季低温对红树林的影响极为显著, 特别是在低纬度的海南、广西和广东湛江, 由于极端低温正值夜间退潮, 对红树林的影响更为显著; 在纬度较高的福建, 本地红树种类秋茄(Kandelia obovata)、桐花树(Aegiceras corniculatum)和白骨壤(Avicennia marina)及引种的木榄(Bruguiera gymnorrhiza)等, 由于长期适应于冬季较低的气温或在种植前经过抗寒锻炼, 具有较强的抗寒能力。各地主要红树植物中, 广布种秋茄、桐花树和白骨壤最为耐寒, 其耐寒性均大于红树科的木榄、海莲(Bruguiera sexangula)和红海榄(Rhizophora stylosa)。海桑(Sonneratia caseolaris)对温度的敏感性最强, 抗寒能力最低, 因此, 即使在其原产地海南也受到较为严重的寒害, 在纬度更高的引种地出现大面积受害甚至全部死亡, 而从孟加拉国引种的无瓣海桑(Sonneratia apetala)却显示出一定的抗寒能力。同一地点的红树植物幼苗的抗寒能力低于大树。此次寒害也造成了苗圃场的种苗大量死亡, 成熟的植株提前落花落果, 这势必会影响后继一两年内红树林的自然更新和人工造林。因此, 在未来红树林造林或人工引种中, 一定要考虑到红树植物的抗寒能力。  相似文献   

7.
8.
Increasing soil salinization of arable land has a major impact on the global ecosystem. One approach to increase the usable global forest area is to develop transgenic trees with higher tolerance to conditions of salt stress. An allene oxide cyclase homolog, mangrin, contains a core protein domain that enhances the salt tolerance of its host. We utilized this feature to develop improved salt-tolerant eucalyptus trees, by using transgenic Eucalyptus camaldulensis carrying the mangrin gene as a model. Since the Japanese government requires an environmental biosafety assessment for the surrounding biosphere, we performed experiments on trees grown in a special netted-house. This study examined the transgenic E. camaldulensis carrying the mangrin gene to assess the feasibility of using these transformants, and assessed their salt tolerance and environmental biosafety. We found that seven of 36 transgenic genotypes had significantly higher salt tolerance than non-transformants, and more importantly, that these plants had no significant impact on environmental biosafety. These results suggest that introduction of the mangrin gene may be one approach to safely enhance salt tolerance in genetically modified Eucalyptus species, and that the transformants have no apparent risks in terms of environmental biosafety. Thus, this study provides valuable information regarding the use of transgenic trees in situ.  相似文献   

9.
10.
11.
将红树植物正红树(Rhizophora apiculata)、海莲(Bruguiera sexangula)和木榄(B.gymnorhiza)从海南岛引种到珠海淇澳-担杆岛省级自然保护区,苗期生长正常。1a生的正红树、海莲和木榄平均苗高分别为45.3cm、28.7cm和56.7cm,平均地径分别为1.34 cm、0.64 cm和1.60 cm,保存率分别为40.9%、59.5%和70.5%。3种红树植物苗期抗寒性大小依次为木榄>海莲>正红树。正红树、海莲和木榄3种红树植物能基本适应引种地的自然条件,对其生长发育特性尚需进行跟踪调查。  相似文献   

12.
Pi Y  Jiang K  Cao Y  Wang Q  Huang Z  Li L  Hu L  Li W  Sun X  Tang K 《Molecular biotechnology》2009,41(2):115-122
Allene oxide cyclase (AOC, E 5.3.99.6) is an essential enzyme in jasmonate (JA) biosynthetic pathway. An AOC gene (defined as CaAOC, Database Accession No. AY863428) had been isolated from Camptotheca acuminata in previous work. Real-time quantitative PCR analysis indicated that mRNA expression of CaAOC was induced by salt stress (120 mM NaCl) and low temperature (4 degrees C). In order to further investigate the role of AOC gene in the processes, CaAOC was introduced into tobacco via Agrobacterium tumefaciens, and the transgenic lines were subjected to the examination of tolerance against salt stress and low temperature. Under salt stress, the chlorophyll content in transgenic tobacco was higher than that of in the wild plants. The electrolyte leakage test revealed that transgenic tobacco plants were more resistant to low temperature over control. Furthermore, 5'-truncated CaAOC was inserted into pET30 and then expressed in Escherichia coli strain BL21DE3 (pLysS). Interestingly, the transformants could grow on 2YT agar containing 400 mM NaCl. Although these mechanisms are not clear yet, this study suggested that CaAOC could not only be a potential target gene in the engineering of plants and bacteria for improved endurance against salt stress, but also be quite useful in enhancing plant tolerance to cold.  相似文献   

13.
Zhang L  Xi D  Li S  Gao Z  Zhao S  Shi J  Wu C  Guo X 《Plant molecular biology》2011,77(1-2):17-31
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypium hirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotiana tabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.  相似文献   

14.
15.
16.
Rapid increase of vacuolar volume in response to salt stress   总被引:15,自引:0,他引:15  
Suspension-cultured cells of mangrove [Bruguiera sexangula (Lour.) Poir.] showed a rapid increase in vacuolar volume under salt stress, although there was no change in the cell volume. The rapid increase in the vacuolar volume was an active process, which followed the activation of the tonoplast H(+)-ATPase and the vacuolar acid phosphatase. The same phenomenon was observed in barley (Hordeum vulgare L. cv. Doriru) root meristematic cells under salt stress but not in pea ( Pisum sativum L.). Increases in vacuolar volume could potentially protect the cytoplasm by decreasing the cytoplasmic volume during the initial phases of salt stress.  相似文献   

17.
国产红树林植物的染色体计数   总被引:7,自引:0,他引:7  
本文对12种国产红树林植物和红树科、海桑科中2种非红树林植物进行了染色体计数,其中7种为染色体新计数,补充了中国红树林植物染色体资料的缺乏。通过调查,确认我国红树林植物有44种,占世界种类总数的44.9%。  相似文献   

18.
The Arabidopsis LSD1 and LOL1 proteins both contain three conserved zinc finger domains and have antagonistic effects on plant programmed cell death (PCD). In this study, a rice (Oryza sativa) functional homolog of LSD1, designated OsLSD1, was identified. The expression of OsLSD1 was light-induced or dark-suppressed. Overexpression of OsLSD1 driven by the cauliflower mosaic virus 35S promoter accelerated callus differentiation in transformed rice tissues and increased chlorophyll b content in transgenic rice plants. Antisense transgenic rice plants exhibited lesion mimic phenotype, increased expression of PR-1 mRNA, and an accelerated hypersensitive response when inoculated with avirulent isolates of blast fungus. Both sense and antisense transgenic rice plants conferred significantly enhanced resistance against a virulent isolate of blast fungus. Moreover, ectopic overexpression of OsLSD1 in transgenic tobacco (Nicotiana tabacum) enhanced the tolerance to fumonisins B1 (FB1), a PCD-eliciting toxin. OsLSD1 green fluorescent protein fusion protein was located in the nucleus of tobacco cells. Our results suggest that OsLSD1 plays a negative role in regulating plant PCD, whereas it plays a positive role in callus differentiation.  相似文献   

19.
Zhang N  Wang F  Meng X  Luo S  Li Q  Dong H  Xu Z  Song R 《Molecular biology reports》2011,38(4):2241-2248
Dunaliella is a group of green algae with exceptional stress tolerance capability, and is considered as an important model organism for stress tolerance study. Here we cloned a TPS (trehalose-6-phosphate synthase) gene from Dunaliella viridis and designated it as DvTPS (D. viridis trehalose-6-phosphate synthase/phosphatase).The DvTPS cDNA contained an ORF of 2793?bp encoding 930?aa. DvTPS had both TPS and TPP domain and belonged to the Group II TPS/TPP fusion gene family. Southern blots showed it has a single copy in the genome. Genome sequence analysis revealed that it has 18 exons and 17 introns. DvTPS had a constitutive high expression level under various NaCl culture conditions, however, could be induced by salt shock. Promoter analysis indicated there were ten STREs (stress response element) in its promoter region, giving a possible explanation of its inducible expression pattern upon salt shock. Yeast functional complementation analysis showed that DvTPS had neither TPS nor TPP activity. However, DvTPS could improve the salt tolerance of yeast salt sensitive mutant G19. Our results indicated that despite DvTPS showed significant similarity with TPS/TPP, its real biological function is still remained to be revealed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号