首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetaminophen killed cultured hepatocytes prepared from male rats induced with 3-methylcholanthrene by two distinct mechanisms. With 0.5 to 5 mM acetaminophen, cell killing within 4 h depended on the inhibition of glutathione reductase by 1,3-bis(chloroethyl)-1-nitrosourea (BCNU) and was accompanied by the peroxidation of cellular lipids as assessed by the accumulation of malondialdehyde. The antioxidant diphenylphenylenediamine (DPPD) prevented both the peroxidation of lipids and the death of the cells. By contrast, DPPD had no effect on the metabolism of acetaminophen as assessed by the extent of the covalent binding of [3H]acetaminophen; by the rate and extent of the depletion of glutathione; and by the accumulation of acetaminophen metabolites in the culture medium. It is concluded that the peroxidation of the phospholipids of cellular membranes is the mechanism whereby 0.5 to 5 mM acetaminophen lethally injures cultured hepatocytes. With 10-20 mM acetaminophen, cell killing at 4 h still depended on BCNU. However, the amount of malondialdehyde in the cultures progressively decreased in parallel with the decreasing ability of DPPD to protect the cells. With 20 mM acetaminophen, there was no evidence of lipid peroxidation, and DPPD had no protective effect. Thus, a second mechanism of lethal cell injury with 10-20 mM acetaminophen is independent of lipid peroxidation and insensitive to antioxidants.  相似文献   

2.
The catalase activity of cultured rat hepatocytes was inhibited by 90% pretreatment with 20 mM aminotriazole without effect on the activities of glutathione peroxidase or glutathione reductase, or on the viability of the cells over the subsequent 24 h. Glutathione reductase was inhibited by 85% by pretreatment with 300 microM 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) without effect on glutathione peroxidase, catalase, or on viability. Both pretreatments sensitized the hepatocytes to the cytotoxicity of H2O2 generated either by glucose oxidase (0.05-0.5 units/ml) or by the autoxidation of the one-electron-reduced state of menadione (50-250 microM). Aminotriazole pretreatment had no effect on the GSH content of the hepatocytes. BCNU reduced GSH levels by 50%. Depletion of GSH levels to less than 20% of control by treatment with diethyl maleate, however, did not sensitize the cells to either glucose oxidase or menadione, indicating that the effect of BCNU is related to inhibition of the GSH-GSSG redox cycle rather than to the depletion of GSH. With glucose oxidase, most of the cell killing in hepatocytes pretreated with either aminotriazole or BCNU occurred between 1 and 3 h. The antioxidant diphenylphenylenediamine (DPPD) had no effect on viability at 3 h. Catalase added to the culture medium 1 h after the addition of glucose oxidase prevented the cell killing measured at 3 h. The sulfhydryl reagents dithiothreitol (200 microM), N-acetyl-L-cysteine (4 mM), and alpha-mercaptopropionyl-L-glycine (2.5 mM) prevented the cell killing with exogenous H2O2 in hepatocytes sensitized by the inhibition of catalase or glutathione reductase. With menadione, there was no killing of nonpretreated hepatocytes at 1 h, and DPPD did not prevent the cell death after 3 h. Aminotriazole pretreatment enhanced the cell killing at 3 h but not at 1 h, and DPPD was not protective. Catalase added to the medium at 1 h inhibited the cell death measured at 3 h. In contrast, menadione killed hepatocytes pretreated with BCNU within 1 h. DPPD prevented cell death at 1 h, and there was evidence of lipid peroxidation in the accumulation of malondialdehyde in the culture medium. Catalase added with menadione did not prevent the cell killing at 1 h but did prevent it at 3 h. These data indicate that catalase and the GSH-GSSG cycle are active in the defense of hepatocytes against the toxicity of H2O2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
These experiments are a continuation of work investigating the mechanism of oxidant-induced damage to cultured bovine pulmonary artery endothelial cells (BPEC). Earlier experiments implicated DNA strand breakage and activation of poly(ADP-ribose)polymerase as critical steps in cell injury. In the current report, a better defined model of oxidant stress was used to investigate DNA damage, lipid peroxidation and protein thiol oxidation in BPEC following oxidant stress. The dose and time response of LDH release following exposure to H2O2 were established. H2O2 was metabolized rapidly by BPEC (t1/2 = 20 min). Hydrogen peroxide-induced increases in thiobarbituric acid (TBA) reactive material were prevented by pretreatment with the lipophilic antioxidant diphenylphenylinediamine (DPPD). However, DPPD did not decrease LDH release. Conversely, pretreatment with 5 mM 3-aminobenzamide (3AB), a competitive inhibitor of poly(ADP-ribose)polymerase, prevented LDH release from BPEC following H2O2 treatment. Dithiothreitol (DTT), a sulfhydryl reducing agent, also prevented LDH release. The effects of 3AB and DTT on H2O2-induced changes in DNA strand breaks and NAD+ and ATP levels were investigated as well as the effect of H2O2 on soluble and protein-bound thiols. As DPPD inhibited peroxidation without preventing LDH release, lipid peroxidation does not appear to play a role in the loss of BPEC viability in response to oxidant stress. As protein thiol oxidation was not caused by H2O2, it does not appear to play a causative role in cytotoxicity, although DTT may protect via maintenance of soluble thiols. H2O2 induces DNA strand breaks, which activate poly(ADP-ribose)polymerase, leading to depletion of cellular NAD+ and ATP and loss in cell viability. This supports earlier studies implicating the activation of poly(ADP-ribose)polymerase in oxidant injury to cultured endothelial cells.  相似文献   

4.
The killing of cultured hepatocytes by allyl alcohol depended on the metabolism of this hepatotoxin by alcohol dehydrogenase to the reactive electrophile, acrolein. An inhibitor of alcohol dehydrogenase, pyrazole, prevented both the toxicity of allyl alcohol and the rapid depletion of GSH. Treatment of the hepatocytes with a ferric iron chelator, deferoxamine, or an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), prevented the cell killing but not the metabolism of allyl alcohol and the resulting depletion of GSH. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) sensitized the hepatocytes to allyl alcohol, an effect that was not attributable to the reduction in GSH with BCNU. The cell killing with allyl alcohol was preceded by the peroxidation of cellular lipids as evidence by an accumulation of malondialdehyde in the cultures. Deferoxamine and DPPD prevented the lipid peroxidation in parallel with their protection from the cell killing. These data indicate that acrolein produces an abrupt depletion of GSH that is followed by lipid peroxidation and cell death. Such oxidative cell injury is suggested to result from the inability to detoxify endogenous hydrogen peroxide and the ensuing iron-dependent formation of a potent oxidizing species. Oxidative cell injury more consistently accounts for the hepatotoxicity of allyl alcohol than does the covalent binding of acrolein to cellular macromolecules.  相似文献   

5.
Cultured hepatocytes were exposed to two chemicals, dinitrofluorobenzene (DNFB) and diethyl maleate (DEM), that abruptly deplete cellular stores of glutathione. Upon the loss of GSH, lipid peroxidation was evidenced by an accumulation of malondialdehyde in the cultures followed by the death of the hepatocytes. Pretreatment of the hepatocytes with a ferric iron chelator, deferoxamine, or the addition of an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), to the culture medium prevented both the lipid peroxidation and the cell death produced by either DNFB or DEM. However, neither deferoxamine nor DPPD prevented the depletion of GSH caused by either agent. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or inhibition of catalase by aminotriazole sensitized the hepatocytes to the cytotoxicity of DNFB. In a similar manner, pretreatment with BCNU potentiated the cell killing by DEM. DPPD and deferoxamine protected hepatocytes pretreated with BCNU and then exposed to DNFB or DEM. These data indicate that an abrupt depletion of GSH leads to lipid peroxidation and cell death in cultured hepatocytes. It is proposed that GSH depletion sensitizes the hepatocyte to its constitutive flux of partially reduced oxygen species. Such an oxidative stress is normally detoxified by GSH-dependent mechanisms. However, with GSH depletion these activated oxygen species are toxic as a result of the iron-dependent formation of a potent oxidizing species.  相似文献   

6.
1. Xanthine oxidase acting aerobically upon acetaldehyde was found to cause the peroxidation of linolenate. This was demonstrated by increased absorbance at 233 nm due to diene conjugation and by the detection of a lipid peroxide spot on the thin layer chromatograms. 2. Superoxide dismutase inhibited this lipid peroxidation, as did catalase, thus indicating that both O2- and H2O2 were essential intermediates. Scavengers of singlet oxygen also inhibited the peroxidation of linolenate, whereas scavengers of hydroxyl radical did not. These effects, which were observed in the absence of iron salts, led to the proposal that O2- and H2O2 can directly give rise to a singlet oxygen, as follows: O2- + H2O2 leads to OH- + OH. + O2. 3. This proposal was further supported through the use of 2,5-dimethylfuran, as an indicating scavenger of singlet oxygen. Thus, when this compound was exposed to a known source of singlet oxygen, it gave a product which was detectable by thin layer chromatography. This product was also observed when 2,5-dimethylfuran was exposed to the xanthine oxidase system, in which case its accumulation was prevented by superoxide dismutase or by catalase, but not by scavengers of hydroxyl radical.  相似文献   

7.
Xanthine oxidase, acting on acetaldehyde under aerobic conditions, produces a flux of O2- and H2O2 which attacks artificial liposomes and washed human erythrocytes. The liposomes were peroxidized and the erythrocytes suffered oxidation of hemoglobin followed by lysis. The oxidation of hemoglobin followed by lysis. The oxidation of hemoglobin, within the exposed erythrocytes, could be largely prevented by prior conversion to carbon monoxyhemoglobin, without preventing lysis. Hemolysis thus appeared to be a consequence of direct oxidative attack on the cell stroma. The enzyme-generated flux of O2- and of H2O2 also inactivated the xanthine oxidase. Superoxide dismutase or catalase, present in the suspending medium, protected the liposomes against peroxidation, the erythrocytes against lysis, and the xanthine oxidase against inactivation. Scavengers of O2('deltag), such as histidine or 2,5-dimethylfuran, which do not react with O2- or H2O2, also prevented peroxidation of liposomes and lysis of erythrocytes when present at low concentrations. In contrast a scavenger of OH-, such as mannitol was ineffective at low concentrations and provided significant protection only at much higher concentrations. It is proposed that O2- and H2O2 cooperated in producing OH- and O2('deltag), which were the proximate causes of lipid peroxidation and of hemolysis.  相似文献   

8.
Treatment of isolated hepatocytes with 1,2-dibromoethane (DBE) caused a concentration dependent depletion of cellular glutathione (GSH) content and a parallel increase in the covalent binding of reactive intermediates to cell proteins, as a consequence of the haloalkane activation. The reduction of the hepatocyte GSH content, induced by DBE, stimulated the onset of lipid peroxidation, as measured by malondialdehyde (MDA) accumulation. N-Acetylcysteine (1 mM) was found to partially prevent GSH loss and to inhibit MDA formation, whereas equal concentrations of cysteine and methionine were ineffective on these respects. The stimulation of the peroxidative reactions appeared to be also associated with an increase in the leakage of lactate dehydrogenase (LDH) from the cells, indicative of a severe hepatocyte injury. Antioxidants such as -tocopherol, N,N′-phenyl-phenylenediamine (DPPD) and promethazine, as well as N-acetylcysteine reduced MDA formation to various extents and also protect against LDH release, yet without interfering with the covalent binding of DBE reactive intermediates to hepatocyte proteins. These results suggest the involvement of lipid peroxidation, consequent to GSH depletion, in the pathogenesis of liver cell necrosis due to DBE.  相似文献   

9.
Oxygen-dependent antagonism of lipid peroxidation   总被引:4,自引:0,他引:4  
Measurements of the rates for formation of conjugated dienes, malonylaldehyde, and lipid hydroperoxides show that increasing the concentration of O2 from 0.11 mM to 0.35 mM or 0.69 mM can slow the rate of linoleic acid peroxidation in a xanthine oxidase/hypoxanthine system. This effect is seen at pH 7.0 but not 7.4 and depends on the presence of monounsaturated fatty acids (oleic, cis, or trans vaccenic acid). Oxygen antagonism of ascorbic acid-iron-EDTA mediated lipid peroxidation is similarly dependent on fatty acid mixtures and occurs at pH 5.0 and 6.0 but not 7.0. The efficiency of initiation of peroxidation in the xanthine oxidase system is unaffected by monounsaturated fatty acids and O2 concentration. Increasing the O2 concentration increases the rate of superoxide radical production, but there is no change in salicylate hydroxylation (e.g., OH. production) or ferrous ion concentration. Oxygen-mediated slower rates of lipid peroxidation are associated with either increased H2O2 production or, based on an indirect assay, singlet O2 production. Increased O2 concentrations increase the rate of azobisisobutyronitrile-initiated lipid peroxidation as expected but addition of exogenous superoxide radicals slows the rate. Under similar conditions superoxide reacts with fatty acids to produce singlet O2. Overall, the data suggest that O2-mediated antagonism occurs because of termination reactions between hydroperoxyl (HO2.) and organic radicals, and singlet O2 or H2O2 are products of these reactions.  相似文献   

10.
Erythrocytes from rats fed large doses of Vitamin A alone, or large doses of vitamin A and vitamin E or diphenyl-p-phenylene diamine (DPPD) were studied for H2O2-induced hemolysis. The vitamin A-dosed rats were more susceptible than normal rats to H2O2-induced hemolysis. Hemolysis was not accompanied by lipid peroxidation. Nevertheless, the antioxidants vitamin E and DPPD inhibited hemolysis in erythrocytes from vitamin A-dosed rats. These antioxidants had the same inhibitory effect when they were included in the diet or added to erythrocyte suspensions in vitro. Erythrocytes from vitamin A-dosed rats with or without added vitamin E or DPPD were less susceptible than the erythrocytes from normal rats to osmotic challenge, showing that vitamin A was present in levels sufficient to alter the structure of the erythrocyte membrane. These studies show that oxidative hemolysis occurs when the erythrocyte membrane is modified. Furthermore, this oxidative hemolysis is unrelated to lipid peroxidation.  相似文献   

11.
Hydrophobic bile acids impair gallbladder emptying in vivo and inhibit gallbladder muscle contraction in response to CCK-8 in vitro. This study was aimed at determining the mechanisms of muscle cell dysfunction caused by bile acids in guinea pig gallbladders. Muscle cells were obtained by enzymatic digestion. Taurochenodeoxycholic acid (TCDC), a hydrophobic bile acid, caused a contraction of up to 15% and blocked CCK-induced contraction. Indomethacin abolished the TCDC-induced contraction. Hydrophilic bile acid tauroursodeoxycholic acid (TUDC) had no effect on muscle contraction but prevented the TCDC-induced contraction and its inhibition on CCK-induced contraction. Pretreatment with NADPH oxidase inhibitor PH2I, xanthine oxidase inhibitor allopurinol, and free-radical scavenger catalase also prevented TCDC-induced contraction and its inhibition of the CCK-induced contraction. TCDC caused H2O2 production, lipid peroxidation, and increased PGE2 synthesis and activities of catalase and SOD. These changes were significantly inhibited by pretreatment of PH2I or allopurinol. Inhibitors of cytosolic phospholipase A2 (cPLA2), protein kinase C (PKC), and mitogen-activating protein kinase (MAPK) also blocked the TCDC-induced contraction. It is concluded that hydrophobic bile acids cause muscle cell dysfunction by stimulating the formation of H2O2 via activation of NADPH and xanthine oxidase. H2O2 causes lipid peroxidation and activates cPLA2 to increase PGE2 production, which, in turn, stimulates the synthesis of free-radical scavengers through the PKC-MAPK pathway.  相似文献   

12.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

13.
Studies have been made on the possible involvement of malondialdehyde (MDA) and (E)-4-hydroxynon-2-enal (HNE), two terminal compounds of lipid peroxidation, in modifying xanthine oxidoreductase activity through interaction with the oxidase (XO) and/or dehydrogenase (XDH) forms. The effect of the two aldehydes on XO (reversible, XO(rev), and irreversible, XO(irr)) and XDH was studied using xanthine oxidase from milk and xanthine oxidoreductase partially purified from rat liver. The incubation of milk xanthine oxidase with these aldehydes resulted in the inactivation of the enzyme following pseudo-first-order kinetics: enzyme activity was completely abolished by MDA (0.5-4 mM), while residual activity (5% of the starting value) associated with an XO(irr) form was always observed when the enzyme was incubated in the presence of HNE (0.5-4 mM). The addition of glutathione to the incubation mixtures prevented enzyme inactivation by HNE. The study on the xanthine oxidoreductase partially purified from rat liver showed that MDA decreases the total enzyme activity, acting only with the XO forms. On the contrary HNE leaves the same level of total activity but causes the conversion of XDH into an XO(irr) form.  相似文献   

14.
Xanthine oxidase-catalyzed crosslinking of cell membrane proteins   总被引:1,自引:0,他引:1  
Isolated erythrocyte membranes exposed to protease-free xanthine oxidase plus xanthine and ferric iron undergo lipid peroxidation and protein crosslinking (appearance of high molecular weight aggregates on sodium dodecyl sulfate (SDS) gel electrophoresis). Spectrin is more susceptible to crosslinking than the other polypeptides. Thiol-reducible bonds (disulfides) as well as nonreducible bonds are generated, the former type relatively rapidly (detected within 10-20 min) and the latter type more slowly (usually detected after 1 h). Reducible crosslinking is inhibited by catalase, but not by superoxide dismutase, desferrioxamine, butylated hydroxyltoluene, and mannitol; whereas nonreducible crosslinking, like free radical lipid peroxidation, is inhibited by all of these agents except mannitol. Zinc(II) also inhibits lipid peroxidation, but stimulates disulfide bond formation to the virtual exclusion of all other crosslinking. Our results indicate that disulfide formation is dependent on H2O2, but not O2- or iron. However, O2-, H2O2, and iron are all required for lipid peroxidation and nondisulfide crosslinking, suggesting the intermediacy of OH generated via the iron-catalyzed Haber-Weiss reaction. The possible role of malonaldehyde (MDA, a by-product of lipid peroxidation) in the latter type of crosslinking was examined. Solubilized samples of xanthine/xanthine oxidase-treated membranes showed a strong visible fluorescence (emission maximum 450 nm; excitation 390 nm). This resembled the fluorescence of membranes treated with authentic MDA, which forms conjugated imine linkages between amino groups. Fluorescence scanning of SDS gels from MDA-treated membranes showed a strong signal coincident with crosslinked proteins and also one in the low molecular weight, nonprotein region, suggestive of aminolipid conjugates. Similar scanning on xanthine/xanthine oxidase-reacted membranes indicated that all fluorescence is associated with the lipid fraction. Thus, nonreducible protein crosslinks in this system do not appear to be of the MDA-derived, Schiff base type.  相似文献   

15.
垃圾填埋场渗滤液尾水灌溉下百慕大草抗氧化系统的反应   总被引:4,自引:0,他引:4  
通过盆栽试验,研究了渗滤液尾水灌溉下百慕大草的膜脂过氧化及酶促、非酶促抗氧化系统的反应.结果表明,低稀释比的渗滤液尾水(<25%)灌溉下,随着稀释比增大,百慕大草叶绿素a/b提高,丙二醛(MDA)、H2O2含量及膜透性降低,膜脂过氧化水平较轻;但中、高稀释比(>25%)下,随稀释比的增大则显示出一定的负效应,表现为叶绿素a/b降低,MDA、H2O2含量及膜透性提高,从而导致膜脂过氧化水平提高.非酶抗氧化剂抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、类胡萝卜素(Car)含量的变化趋势相同,即低稀释比下含量升高,中高稀释比胁迫下明显降低.抗氧化酶中,超氧化物岐化酶(SOD)和过氧化物酶(POD)的活性变化同抗氧化剂变化趋势相似,但POD对胁迫的反应更敏感;而过氧化氢酶(CAT)活性变化趋势则先减弱后增强;MDA含量和抗氧化剂含量、抗氧化酶SOD、POD活性间的显著负相关,表明3种抗氧化剂和SOD、POD在防止百慕大草膜脂过氧化上可能起到更重要的作用.  相似文献   

16.
The primary reactions leading to Al toxicity in plant cells have not yet been elucidated. We used soybean (Glycine max [L.] Merr.) cell suspension cultures to address the question whether lipid peroxidation plays an important role in Al toxicity. Upon transfer to an Al-containing culture medium with a calculated Al3+ activity of 15 microM soybean cells showed a distinct and longtime increase in lipid peroxidation within 4 h. At the same time a drastic loss of cell viability was observed. Butylated hydroxyanisole (BHA) and N,N'-diphenyl-p-phenylenediamine (DPPD), two lipophilic antioxidants, were able to almost completely suppress lipid peroxidation in Al-treated cells at a concentration of 20 microM. This effect was dose-dependent for DPPD and was observed at minimum concentrations of 1-2 microM. When lipid peroxidation was suppressed by DPPD or BHA cell viability remained high even in the presence of toxic Al concentrations. These results suggest that Al-induced enhancement of lipid peroxidation is a decisive factor for Al toxicity in suspension cultured soybean cells.  相似文献   

17.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

18.
Free radical scavenging and antioxidant activities of a standardized extract of Hypericum perforatum (SHP) were examined for inhibition of lipid peroxidation, for hydroxyl radical scavenging activity and interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH). Concentrations between 1 and 50 microg/ml of SHP effectively inhibited lipid peroxidation of rat brain cortex mitochondria induced by Fe2+/ascorbate or NADPH system. The results showed that SHP scavenged DPPH radical in a dose-dependent manner and also presented inhibitory effects on the activity of xanthine oxidase. In contrast, hydroxyl radical scavenging occurs at high doses. The protective effect of the standardized extract against H2O2-induced oxidative damage on the pheochromocytoma cell line PC 12 was investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays, caspase-3-enzyme activity and accumulation of reactive oxygen species [2',7'-dichlorofluorescin (DCF) assay]. Following 8-h cell exposure to H2O2 (300 microM), a marked reduction in cell survival was observed, which was significantly prevented by SHP (pre-incubated for 24 h) at 1-100 microg/ml. In a separate experiment, different concentrations of the standardized extract (0.1-100 microg/ml) also attenuated the increase in caspase-3 activity and suppressed the H2O2 -induced reactive oxygen species generation. Taken together, these results suggest that SHP shows relevant antioxidant activity both in vitro and in a cell system, by means of inhibiting free radical generation and lipid peroxidation.  相似文献   

19.
Incubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) resulted in an inhibition of gamma-aminobutyric acid (GABA) uptake. The inhibitory effects of X/XO were temperature- and time-dependent, and were characterized by an increased Km for GABA and a decreased Vmax. Inhibition of GABA uptake by X/XO was associated with both the formation of malonyldialdehyde (MDA) and conjugated dienes, indicating that lipid peroxidation was involved. Studies with catalase, superoxide dismutase (SOD), mannitol, and chelated iron suggested that hydroxyl radical (OH X) was probably responsible for the initiation of lipid peroxidation. Both the peroxidation of synaptosomal membranes and the inhibition of GABA uptake by X/XO were enhanced by the addition of ADP and FeCl2. The X/XO-induced inhibition of GABA uptake by synaptosomes could be prevented by preincubation of synaptosomes with certain glucocorticoids prior to X/XO exposure. Methylprednisolone sodium succinate (MPSS), dexamethasone sodium phosphate (DMSP), and prednisolone sodium succinate (PSS) all prevented the inhibition of GABA uptake by X/XO. MPSS was most effective at concentrations around 100 microM, DMSP was slightly more potent, and PSS was optimal at around 300 microM. On the other hand, hydrocortisone sodium succinate (HCSS) was ineffective at preventing X/XO-induced inhibition of GABA uptake at concentrations up to 3 mM. The steroids are presumed to work through a mechanism that blocked the formation of lipid peroxides, as MPSS inhibited the formation of conjugated dienes in synaptosomes exposed to X/XO at a concentration that also protected GABA uptake.  相似文献   

20.
The effect of intracellular calcium chelators on rabbit renal proximal tubule (RPT) cell death induced by t-butyl hydroperoxide (TBHP) and H2O2 was examined. Preincubation of RPT suspensions with 50 microM QUIN 2/AM completely prevented TBHP (0.5 mM) and H2O2 (2 mM) induced cell death [i.e., release of lactate dehydrogenase (LDH)]. QUIN 2/AM, BAPTA/AM, EGTA/AM, and FURA 2/AM, at 5 microM, decreased LDH release (at 6 hr) from 41% to 4%, 21%, 26%, and 33%, and decreased lipid peroxidation (at 1 hr) from 1.0 to 0.1, 0.4, 0.6, and 0.8 nmol MDA/mg protein, respectively, after TBHP exposure. Since oxidant-induced lipid peroxidation and cell death are iron-dependent in this model, these results suggest that the intracellular calcium chelators inhibit cell death by chelating iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号