首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.  相似文献   

2.
The growth promoting effects of lithium and insulin on cultures of mammary gland epithelium and CZF mouse mammary tumor cells were investigated. Lithium chloride exerts a 450-fold increase in the rate of DNA synthesis in mammary epithelium from mid-pregnant mice in organ culture or monolayer culture. There is an increase in both the percentage of cells initiating DNA synthesis and the net accumulation of DNA. The most effective lithium concentration is 10 mM, and the maximally effective rate of stimulation is reached 48 hours after addition. The magnitude of response to lithium varies with the physiological state of the mammary epithelial cell donor: epithelium from non-pregnant or lactating mice is less responsive than that from mid-pregnant mice. In combination, insulin and lithium produce either a synergistic or an additive effect on the growth of epithelium dependent upon the physiological state of the donor animal. Lithium also promotes the growth of mammary tumor cells in the absence of serum or other mitogens. The action of lithium on DNA synthesis appears to be a direct effect on the epithelial cells.  相似文献   

3.
These experiments demonstrate that serum, like insulin, can initiate DNA synthesis in mouse mammary gland epithelium, resulting in a three- to four-fold increase in the rate of DNA synthesis and number of cells synthesizing DNA. Both serum and insulin also increase the tritiated thymidine counts in the acid soluble material of these cells, suggesting that each alters thymidine transport. When combined at any concentration, these agents produce an additive effect on DNA synthesis, number of cells synthesizing DNA and thymidine transport. The factor(s) in serum responsible for these effects is associated with high molecular weight material. These experiments suggest that DNA synthesis and thymidine transport are affected independently by serum and insulin in mammary gland epithelium.  相似文献   

4.
The proliferative response of mammary gland epithelium from nonpregnant, pregnant, and lactating mice to mammary serum factor and insulin was studied in vitro. Mammary gland epiithelium from nonpregnant and lactating animals has a delayed proliferative response to mammary serum factor and insulin when compared to the response of epithelium from pregnant animals. The results show that as the animals go through pregnancy into lactation the mammary gland epithelium becomes less responsive to mammary serum factor while it retains its responsiveness to insulin. The concentration of mammary serum factor in sera from animals at various physiological stages is constant. Sera from hypophysectomized rats, on the other hand, show a 50% drop in mammary serum factor activity. This loss of activity cannot be reversed by injecting prolactin, 17-beta-estradiol, or growth hormone into the hypophysectomized animals. A hypothesis that the mammary gland is composed of two proliferative epithelial populations is developed, and the possible role of prolactin in stimulating DNA synthesis is discussed.  相似文献   

5.
Involution of the mammary gland following weaning is divided into two distinct phases. Initially, milk stasis results in the induction of local factors that cause apoptosis in the alveolar epithelium. Secondly after a prolonged absence of suckling, the consequent decline in circulating lactogenic hormone concentrations initiates remodeling of the mammary gland to the virgin-like state. We have shown that immediately following weaning TGFbeta3 mRNA and protein is rapidly induced in the mammary epithelium and that this precedes the onset of apoptosis. Unilateral inhibition of suckling and hormonal reconstitution experiments showed that TGFbeta3 induction is regulated by milk stasis and not by the circulating hormonal concentration. Directed expression of TGFbeta3 in the alveolar epithelium of lactating mice using a beta-lactoglobulin promoter mobilized SMAD4 translocation to the nucleus and caused apoptosis of these cells, but not tissue remodeling. Transplantation of neonatal mammary tissue derived from TGFbeta3 null mutant mice into syngenic hosts resulted in a significant inhibition of cell death compared to wild-type mice upon milk stasis. These results provide direct evidence that TGFbeta3 is a local mammary factor induced by milk stasis that causes apoptosis in the mammary gland epithelium during involution.  相似文献   

6.
A growth factor, mammary-derived growth factor 1 (MDGF1), has been purified to apparent homogeneity from human milk. The factor is a pepsin-sensitive, reducing agent-insensitive protein with a molecular mass of 62 kDa and a pI of 4.8. An apparently identical factor has been isolated from human mammary tumors, suggesting that MDGF1 might be made by and act as an autocrine growth factor for mammary cells. High affinity receptors for MDGF1 have been detected on mouse mammary cells, normal rat kidney cells, and A431 epidermoid cells (KD = 2 X 10(-10) M). MDGF1 at picomolar levels stimulates the growth of mammary cells and greatly amplifies their production of collagen, apparently via elevating collagen mRNA levels, an effect that is demonstrated for normal rat kidney cells. The responsiveness of mammary cells to MDGF1 is attenuated when the cells are grown on a basement membrane collagen substratum, a component of the extracellular matrix upon which these cells normally rest in vivo. MDGF1 thus may regulate the production of new basement membrane as mammary epithelium invades the stroma during proliferation.  相似文献   

7.
Because the mammary parenchyma is accessible from the exterior of an animal through the mammary duct, adenovirus transduction holds promise for the short-term delivery of genes to the mammary epithelium for both research and therapeutic purposes. To optimize the procedure and evaluate its efficacy, an adenovirus vector (human adenovirus type 5) encoding a green fluorescent protein (GFP) reporter and deleted of E1 and E3 was injected intraductally into the mouse mammary gland. We evaluated induction of inflammation (by intraductal injection of [(14)C]sucrose and histological examination), efficiency of transduction, and maintenance of normal function in transduced cells. We found that transduction of the total epithelium in the proximal portion of the third mammary gland varied from 7% to 25% at a dose of 2 x 10(6) PFU of adenovirus injected into day 17 pregnant mice. Transduction was maintained for at least 7 days with minimal inflammatory response; however, significant mastitis was observed 12 days after transduction. Adenovirus transduction could also be used in the virgin animal with little mastitis 3 days after transduction. Transduced mammary epithelial cells maintained normal morphology and function. Our results demonstrate that intraductal injection of adenovirus vectors provides a versatile and noninvasive method of investigating genes of interest in mouse mammary epithelial cells.  相似文献   

8.
9.
Cell-cell interactions promote mammary epithelial cell differentiation   总被引:16,自引:6,他引:10       下载免费PDF全文
Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interaction. Mammary epithelium from mid-pregnant mice was plated on confluent irradiated monolayers of 3T3-L1 cells, a subclone of the Swiss 3T3 cell line that differentiates into adipocytes in monolayer culture and other cell monolayers (3T3-C2 cells, Swiss 3T3 cells, and human foreskin fibroblasts). Casein was synthesized by mammary epithelium only in the presence of co-cultured cells and the lactogenic hormone combination of insulin, hydrocortisone, and prolactin. Synthesis and accumulation of alpha-, beta-, and gamma-mouse casein within the epithelium was shown by immunohistochemical staining of cultured cells with anti-casein monoclonal antibodies, and the specificity of the immunohistochemical reaction was demonstrated using immunoblots. A competitive immunoassay was used to measure the amount of casein secreted into the culture medium. In a 24-h period, mammary epithelium co-cultured with 3T3-L1 cells secreted 12-20 micrograms beta-casein per culture dish. There was evidence of specificity in the cell-cell interaction that mediates hormone-dependent casein synthesis. Swiss 3T3 cells, newborn foreskin fibroblasts, substrate-attached material ("extracellular matrix"), and tissue culture plastic did not support casein synthesis, whereas monolayers of 3T3-L1 and 3T3-C2 cells, a subclone of Swiss 3T3 cells that does not undergo adipocyte differentiation, did. We conclude that interaction between mammary epithelium and other specific nonepithelial cells markedly influences the acquisition of hormone sensitivity of the epithelium and hormone-dependent differentiation.  相似文献   

10.
11.
Lactoferrin is synthesized by glandular epithelial cells and neutrophils and is also present on both sides of the mammary epithelium. We have studied the origin of lactoferrin detected in the various compartments of mouse mammary tissue. As revealed by immunogold electron microscopy, lactoferrin is present in mammary epithelial cells and in the basal region of the epithelium, associated with connective tissue and stroma cells at all physiological stages studied. A perturbation of protein synthesis or transport after in vitro treatment with cycloheximide or brefeldin A does not abrogate lactoferrin labelling in the basal region of the epithelium. The expression of lactoferrin has also been observed in the fat pads of mammary glands from mice surgically depleted of epithelial cells. The sealing of one teat for 24 h is accompanied by an increase in both the number of stroma cells and the labelling of myoepithelial cells. Thus, the lactoferrin present in the interstitial space of the mouse mammary epithelium originates in part from stroma cells. Possible roles of lactoferrin at the basal side of the mammary epithelium are discussed.  相似文献   

12.
Virgin rat mammary epithelium enriched for alveoli were embedded in a collagen gel matrix to study the direct effect of mammogenic hormones and epidermal growth factor (EGF) on their growth over a 12-day culture period. Serum-supplemented medium alone caused a 3- to 4-fold increase in cell number, whereas medium containing insulin, prolactin, progesterone, cholera toxin and serum caused a 15-fold increase. Cultures resulting from this substantial cell number increase consisted of large, smooth-bordered epithelial colonies with relatively few (< 1%) single cells surrounding them. An equal increase in cell number was obtained when progesterone was replaced by hydrocortisone in the above-mentioned medium, but these cultures contained predominantly single spindle-shaped cells with a few small epithelial colonies. The smooth-bordered epithelial colonies consisted solely of mammary epithelial cells, since they contained thioesterase II, an enzyme found exclusively in mammary epithelium. The identity of the single spindle-shaped cells remains to be determined. The addition of EGF to serum or serum, hormone and cholera toxin-supplemented medium did not enhance the proliferative effect of these factors on the alveolar-enriched population.  相似文献   

13.
3T3-L1 adipocytes promote the growth of mammary epithelium   总被引:4,自引:0,他引:4  
Murine mammary epithelium grows in association with predominantly adipocyte stroma in vivo. To investigate potential growth-promoting effects of adipocytes on mammary epithelium, we developed a co-culture system of mammary epithelium and adipocytes by taking advantage of the 3T3-L1 cell line. These cells undergo adipocyte differentiation when the culture reaches confluence and growth ceases. Mid-pregnant murine mammary epithelium was plated on lethally irradiated feeder layers of 3T3-L1 adipocytes, undifferentiated 3T3-L1 cells, 3T3-C2 fibroblasts (a subclone of 3T3 cells that does not undergo adipocyte differentiation), or tissue culture plastic. Mammary epithelial colony size on adipocyte feeder layers was 2-fold larger than colonies on 3T3-C2 cells and 4-fold larger than colonies on tissue culture plastic. Measurement of tritiated thymidine [3H]TdR incorporation and labelling index in mammary cells was significantly higher on adipocytes than on other feeder layers or plastic. There was a 6-fold increase in mammary cell number after 5 days in culture when mammary epithelium was plated on substrate-attached material ('extracellular matrix') derived from 3T3-L1 cells and a 4-fold increase in cell number when plated on plastic in conditioned medium derived from 3T3-L1 adipocytes compared with growth on plastic in unconditioned medium. We conclude that interaction of mammary epithelium with adipocytes results in a marked increase in proliferation of mammary epithelium and that extracellular components may mediate this effect.  相似文献   

14.
Leukemia inhibitory factor (LIF) is a multifunctional glycoprotein that displays multiple biological activities in different cell types, but to date there has been no report on its expression in the normal mammary gland. In this study we found that LIF is expressed at low but detectable levels in postpubertal, adult virgin, and pregnant mouse mammary glands. However, LIF expression drops after parturition to become almost undetectable in lactating glands. Interestingly, LIF expression shows a steep increase shortly after weaning that is maintained for the following 3 days. During this period, known as the first stage of mammary gland involution, the lack of suckling induces local factors that cause extensive epithelial cell death. It has been shown that Stat3 is the main factor in signaling the initiation of apoptosis, but the mechanism of its activation remains unclear. Herein, we show that LIF expression in the gland is induced by milk stasis and not by the decrease of circulating lactogenic hormones after weaning. Implantation of LIF containing pellets in lactating glands results in a significant increase in epithelium apoptosis. In addition, this treatment also induces Stat3 phosphorylation. We conclude that LIF regulated expression in the mouse mammary gland may play a relevant role during the first stage of mammary gland involution. Our results also show that LIF-induced mammary epithelium apoptosis could be mediated, at least partially, by Stat3 activation.  相似文献   

15.
16.
Mouse mammary tumor virus (MMTV) expression is associated with hyperplastic alveolar growth and subsequent development of mammary cancers in the mouse. The expression of this virus is also controlled by factors involved in the normal proliferation and differentiation of the mammary epithelium. During pregnancy when the mammary gland undergoes massive proliferation, MMTV expression is increased. Steroid hormones and growth factors that play an important role in the proliferation of mammary gland cells are responsible for the increased MMTV expression. In sarcomatous transformation of mouse mammary epithelial cells, MMTV expression is repressed. This repression is due to negative control of MMTV expression by transforming growth factor-beta (TGF beta). This growth factor is produced in high amounts when mammary epithelial cells progress into the transformed state. The expression of MMTV is therefore under multiple control by steroid hormones and growth factors.  相似文献   

17.
The cells with mammary repopulating capability can achieve mammary gland morphogenesis in a suitable cellular microenvironment. Using cell surface markers of CD24, CD29 and CD49f, mouse mammary repopulating unit (MRU) has been identified in adult mammary epithelium and late embryonic mammary bud epithelium. However, embryonic MRU remains to be fully characterized at earlier mammary anlagen stage. Here we isolated discrete populations of E14.5 mouse mammary anlagen cells. Only LinCD24medCD29+ cell population was predicted as E14.5 MRU by examining their capacities of forming mammosphere and repopulating cleared mammary fat pad in vivo. However, when we characterized gene expressions of this E14.5 cell population by comparing with adult mouse MRU (LinCD24+CD29hi), the gene profiling of these two cell populations exhibited great differences. Real-time PCR and immunostaining assays uncovered that E14.5 LinCD24medCD29+ cell population was a heterogeneous stroma-enriched cell population. Then, limiting dilutions and single-cell assays also confirmed that E14.5 LinCD24medCD29+ cell population possessed low proportion of stem cells. In summary, heterogeneous LinCD24medCD29+ cell population exhibited mammary repopulating ability in E14.5 mammary anlagen, implying that only suitable mammary stroma could enable mammary gland morphogenesis, which relied on the interaction between rare stem cells and microenvironment.  相似文献   

18.
End buds are the growing terminal structures of the ducts in the mammary gland. They are made up of undifferentiated epithelial cells that, under the hormonal milieu of adult and pregnant females, give rise to the ducts and alveoli of the mature gland. The end buds are of interest in understanding the developmental biology of the gland. They are also likely targets for many mammary carcinogens and, therefore, of interest in understanding the biology of mammary cancer. A method was developed for isolating end buds as a pure subpopulation from collagenase and hyaluronidase digested 4-week-old C57BL/Crgl mouse mammary glands. They were cultured within a rat tail collagen gel matrix for 3 weeks and fed with media containing various combinations of sera, hormones and growth-promoting factors. Growth in response to the different media was measured by photographing individual end bud colonies over time using dark field illumination. The growth of the individual colonies was quantitated using a computer-assisted photodensitometry method of determining the colonies' mass. The end buds showed the greatest growth response (greater than 20-fold increase in 3 weeks with a minimum doubling time of 48 h) to medium supplemented with 50% equine serum and cholera toxin or with less serum (15%) and epidermal growth factor (EGF), hormones and cholera toxin. Initially, the colonies grew logarithmically, then slowed as the colony size increased. This was due, in part, to the cessation of growth by the cells in the center. This end bud culture system differs from that of dissociated mouse mammary cells in a number of ways which are discussed.  相似文献   

19.
Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates cell proliferation, apoptosis and immune system responses. In the breast, the mammary epithelium is the primary source of TGFB1 and increased expression is associated with increased breast cancer risk. This study was conducted to investigate the roles of epithelial cell-derived TGFB1 in regulation of epithelial cell activity and macrophage phenotype in the mammary gland. Tgfb1 null mutant and wildtype mammary epithelium was transplanted into contra-lateral sides of the cleared mammary gland of TGFB1 replete scid mice. Transplanted tissue was analysed for markers of proliferation and apoptosis to determine the effect of Tgfb1 null mutation on epithelial cell turnover, and was analysed by immunohistochemistry to investigate the location, abundance and phenotype of macrophages. The number of proliferating and dying ductal epithelial cells, determined by BrdU and TUNEL, was increased by 35% and 3.3-fold respectively in mammary gland transplanted with Tgfb1 null epithelium compared to wildtype epithelium (p < 0.05). Abundance of F4/80+ macrophages in between Tgfb1 null epithelial cells compared to wildtype epithelial cells was increased by 50%. The number of iNOS+ and CCR7+ cells in the stroma surrounding Tgfb1 null alveolar epithelium was increased by 78% and 2-fold respectively, and dendriform MHC class II+ cells within ductal epithelium were decreased by 30%. We conclude that epithelial cell-derived TGFB1 in the mammary gland has two functions: (1) regulation of cellular turnover of epithelial cells, and (2) regulation of local macrophage phenotype. These findings shed new light on the diversity of roles of TGFB1 in the mammary gland which are likely to impact on breast cancer risk.  相似文献   

20.
A new system for studying growth of normal human mammary epithelial cells in an in vivo environment using athymic nude mice is described. Human mammary epithelial cells dissociated from reduction mammoplasty specimens were embedded within collagen gels and subsequently transplanted subcutaneously into nude mice. Histological sections of recovered collagen gels showed epithelial cells arranged as short tubules with some branching. Proliferation of mammary epithelial cells was quantitated in vivo by 3 days' continuous infusion with 5 bromo-2′-deoxy-uridine followed by immunostaining of sections from recovered gels. Ovarian steroids administered to the host animals, resulting in blood serum levels normally found in the human female, had little or no effect on the proliferation of human mammary epithelial cells. Collagen gel embedded mouse mammary epithelial cells, mouse mammary explants, and host mammary glands all responded similarly to ovarian steroids, suggesting that the unresponsiveness of the human mammary epithelial cells under these conditions was not due to dissociation per se. However, an increased dose of 17β-estradiol or a growth factor combination containing epidermal growth factor, cholera toxin, and cortisol significantly stimulated the proliferation of human outgrowths. The growth factor response was dependent on the location of the cells, with the greatest response seen in the part of the gel proximal to the osmotic pump delivering the growth factors and the effect gradually waning in area more distal to the pump. The effect was especially striking since the mitotic figures could be easily identified and the labeling index was as high as 75%. The host mouse mammary gland also responded to growth factors, resulting in ductal hyperplasia. The proliferative and morphogenetic effects of various agents on normal human mammary epithelial cells embedded in collagen gel can be studied in vivo in nude mice. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号