首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The protein predicted by the sequence of the human pim-1 proto-oncogene shares extensive homology with known serine/threonine protein kinases, and yet the human Pim-1 enzyme has previously been reported to exhibit protein tyrosine kinase activity both in vitro and in vivo. Recently a new class of protein kinases has been identified which exhibits both protein-serine/threonine and protein-tyrosine kinase activities. We therefore investigated the possibility that the human Pim-1 kinase likewise possesses such bifunctional enzymatic phosphorylating activities. A full-length human pim-1 cDNA was subcloned into the bacterial vector pGEX-2T and the Pim-1 protein expressed as a fusion product with bacterial glutathione S-transferase (GST). The hybrid GST-Pim-1 fusion protein was affinity purified on a glutathione-Sepharose column prior to treatment with thrombin for cleavage of the Pim-1 protein from the transferase. Pim-1 was purified and the identity of recombinant protein confirmed by amino-terminal sequence analysis. Pim-1 was tested for kinase activity with a variety of proteins and peptides known to be substrates for either mammalian protein-serine/threonine or protein-tyrosine kinases and was found to phosphorylate serine/threonine residues exclusively in vitro. Both the Pim-1-GST fusion protein and the isolated Pim-1 protein exhibited only serine/threonine phosphorylating activity under all in vitro conditions tested. Pim-1 phosphorylated purified mammalian histone H1 with a Km of approximately 51 microM. Additionally, Pim-1 exhibited low levels of serine/threonine autophosphorylating activity. These observations place the human Pim-1 in a small select group of cytoplasmic transforming oncogenic kinases, including the protein kinase C, the Raf/Mil, and the Mos subfamilies, exhibiting serine/threonine phosphorylating activity.  相似文献   

4.
We have identified a novel nucleolar protein, PAP-1-associated protein-1 (PAPA-1), after screening the interacting proteins with Pim-1-associated protein-1 (PAP-1), a protein that is a phosphorylation target of Pim-1 kinase. PAPA-1 comprises 345 amino acids with a basic amino-acid cluster. PAPA-1 was found to be localized in the nucleolus in transfected HeLa cells, and the lysine/histidine cluster was essential for nucleolar localization of PAPA-1. PAPA-1 protein and mRNA expression decreased upon serum restimulation of starvation-synchronized cells, which displayed maximum level of PAPA-1 expression at G0 and early G1 phase of the cell cycle. Ectopic expression of PAPA-1 induced growth suppression of cells, and the effect was dependent on its nucleolar localization in established HeLa cell lines that inducibly express PAPA-1 or its deletion mutant under the control of a tetracycline-inducible promoter. Furthermore, when PAPA-1-inducible HeLa cells were synchronized by thymidine, colcemid or mimosine, and then PAPA-1 was expressed, the proportion of cells at the G1 phase was obviously increased. These results suggest that PAPA-1 induces growth and cell cycle arrests at the G1 phase of the cell cycle.  相似文献   

5.
The human pim-1 proto-oncogene was expressed in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein and the enzymatic properties of its kinase activity were characterized. Likewise, a Pim-1 mutant lacking intrinsic kinase activity was constructed by site-directed mutagenesis (Lys67 to Met) and expressed in E. coli. In vitro assays with the mutant Pim-1 kinase showed no contaminating kinase activity. The wild-type Pim-1 kinase-GST fusion protein showed a pH optimum of 7 to 7.5 and optimal activity was observed at either 10 mM MgCl2 or 5 mM MnCl2. Higher cation concentrations were inhibitory, as was the addition of NaCl to the assays. Previous work by this laboratory assaying several proteins and peptides showed histone H1 and the peptide Kemptide to be efficiently phosphorylated by recombinant Pim-1 kinase. Here we examine the substrate sequence specificity of Pim-1 kinase in detail. Comparison of different synthetic peptide substrates showed Pim-1 to have a strong substrate preference for the peptide Lys-Arg-Arg-Ala-Ser*-Gly-Pro with an almost sixfold higher specificity constant kcat/Km over that of the substrate Kemptide (Leu-Arg-Arg-Ala-Ser*-Leu-Gly). The presence of basic amino acid residues on the amino terminal side of the target Ser/Thr was shown to be essential for peptide substrate recognition. Furthermore, phosphopeptide analysis of calf thymus histone H1 phosphorylated in vitro by Pim-1 kinase resulted in fragments containing sequences similar to that of the preferred synthetic substrate peptide shown above. Therefore, under optimized in vitro conditions, the substrate recognition sequence for Pim-1 kinase is (Arg/Lys)3-X-Ser/Thr*-X', where X' is likely neither a basic nor a large hydrophobic residue.  相似文献   

6.
The main intrinsic membrane protein of the lens fiber cell, MIP, has been previously shown to be phosphorylated in preparations of lens fragments. Phosphorylation occurred on serine residues near the cytoplasmic C-terminus of the molecule. Since MIP is thought to function as a channel protein in lens plasma membranes, possibly as a cell-to-cell channel protein, phosphorylation could regulate the assembly or gating of these channels. We sought to identify the specific serines which are phosphorylated in order to help identify the kinases involved in regulating MIP function. To this end we purified a peptide fragment from native membranes that had not been subjected to any exogenous kinases or kinase activators. Any phosphorylation detected in these fragments must be due to cellular phosphorylation and thus is termed in vivo phosphorylation. Purified membranes were also phosphorylated with cAMP-dependent protein kinase to determine the mobility of phosphorylated and unphosphorylated MIP-derived peptides on different HPLC columns and to determine possible cAMP-dependent protein kinase phosphorylation sites. Lens membranes, which contain 50-60% of the protein as MIP, were digested with lysylendopeptidase C. Peptides were released from the C-terminal region of MIP and a major product of 21-22 kDa remained membrane-associated. Separation of the lysylendopeptidase-C-released peptides on C8 reversed-phase HPLC demonstrated that one of these fragments, corresponding to residues 239-259 in MIP, was partially phosphorylated. The phosphorylated and nonphosphorylated forms of this peptide were separated on QAE HPLC. In vivo phosphorylation sites were found at residues 243 and 245 through phosphoserine modification via ethanethiol and sequence analysis. Phosphorylation was never detected on serine 240. The phosphorylation level of serine 243 could be increased by incubation of membranes with cAMP-dependent protein kinase under standard assay conditions. Other kinases that phosphorylate serines found near acidic amino acids must be responsible for the in vivo phosphorylation demonstrated at serine 245.  相似文献   

7.
PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene.  相似文献   

8.
The products of rap genes (rap1A, rap1B and rap2) are small molecular weight GTP-binding proteins that share approximately 50% homology with ras-p21s. It had previously been shown that a rap1 protein (also named Krev-1 or smg p21) could be phosphorylated on serine residues by the cAMP-dependent protein kinase (PKA) in vitro as well as in intact platelets stimulated by prostaglandin E1. We show here that the rap1A protein purified from recombinant bacteria is phosphorylated in vitro by the catalytic subunit of PKA and that the deletion of the 17 C-terminal amino acids leads to the loss of this phosphorylation. This suggests that the serine residue at position 180 constitutes the site of phosphorylation of the rap1A protein by PKA. The rap1 protein can also be phosphorylated by PKA in intact fibroblasts; this phenomenon is independent of their proliferative state. In contrast, protein kinase C (PKC) does not phosphorylate the rap1 proteins, neither in vitro nor in vivo. Finally, the 60% homologous rap2 protein is neither phosphorylated in vitro nor in vivo by PKA or PKC.  相似文献   

9.
PRK1 is a lipid- and Rho GTPase-activated serine/threonine protein kinase implicated in the regulation of receptor trafficking, cytoskeletal dynamics and tumorigenesis. Although Rho binding has been mapped to the HR1 region in the regulatory domain of PRK1, the mechanism involved in the control of PRK1 activation following Rho binding is poorly understood. We now provide the first evidence that the very C-terminus beyond the hydrophobic motif in PRK1 is essential for the activation of this kinase by RhoA. Deletion of the HR1 region did not completely abolish the binding of PRK1-DeltaHR1 to GTPgammaS-RhoA nor the activation of this mutant by GTPgammaS-RhoA in vitro. In contrast, removing of the last six amino acid residues from the C-terminus of PRK1 or truncating of a single C-terminal residue from PRK1-DeltaHR1 completely abrogated the activation of these mutants by RhoA both in vitro and in vivo. The critical dependence of the very C-terminus of PRK1 on the signaling downstream of RhoA was further demonstrated by the failure of the PRK1 mutant lacking its six C-terminal residues to augment lisophosphatidic acid-elicited neurite retraction in neuronal cells. Thus, we show that the HR1 region is necessary but not sufficient in eliciting a full activation of PRK1 upon binding of RhoA. Instead, such activation is controlled by the very C-terminus of PRK1. Our results also suggest that the very C-terminus of PRK1, which is the least conserved among members of the protein kinase C superfamily, is a potential drug target for pharmacological intervention of RhoA-mediated signaling pathways.  相似文献   

10.
In vertebrates, the checkpoint-regulatory kinase Chk1 mediates cell-cycle arrest in response to a block in DNA replication or to DNA damaged by ultraviolet radiation. The activation of Chk1 depends on both Claspin and the upstream regulatory kinase ATR. Claspin is a large acidic protein that becomes phosphorylated and binds to Chk1 in the presence of checkpoint-inducing DNA templates in Xenopus egg extracts. Here we identify, by means of deletion analysis, a region of Claspin of 57 amino acids that is both necessary and sufficient for binding to Xenopus Chk1. This Chk1-binding domain contains two highly conserved repeats of approximately ten amino acids. A serine residue in each repeat (serine 864 and serine 895) undergoes phosphorylation during a checkpoint response. A mutant of Claspin containing non-phosphorylatable amino acids at positions 864 and 895 cannot bind to Chk1 and is unable to mediate its activation. Our results indicate that two phosphopeptide motifs in Claspin are essential for checkpoint signalling.  相似文献   

11.
12.
13.
Pim-1 kinase, a serine/threonine protein kinase encoded by the pim proto-oncogene, is involved in several signalling pathways such as the regulation of cell cycle progression and apoptosis. Many cancer types show high expression levels of Pim kinases and particularly Pim-1 has been linked to the initiation and progression of the malignant phenotype. In several cancer tissues somatic Pim-1 mutants have been identified. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of Pim-1 kinase. We expressed and purified some of the mutants of Pim-1 kinase that are expressed in cancer tissues and reported in the single nucleotide polymorphisms database. The point mutations in the variants significantly affect the conformation of the native state of Pim-1. All the mutants, expressed as soluble recombinant proteins, show a decreased thermal and thermodynamic stability and a lower activation energy values for kinase activity. The decreased stability accompanied by an increased flexibility suggests that Pim-1 variants may be involved in a wider network of protein interactions. All mutants bound ATP and ATP mimetic inhibitors with comparable IC50 values suggesting that the studied Pim-1 kinase mutants can be efficiently targeted with inhibitors developed for the wild type protein.  相似文献   

14.
The Pim family of Ser/Thr kinases has been implicated in the process of lymphomagenesis and cell survival. Known substrates of Pim kinases are few and poorly characterized. In this study we set out to identify novel Pim-2 substrates using the Kinase Substrate Tracking and Elucidation (KESTREL) approach. Two potential substrates, eukaryotic initiation factor 4B (eIF4B) and apoptosis inhibitor 5 (API-5), were identified from rat thymus extracts. Sequence comparison of the Pim-2 kinase phosphorylation sites of eIF4B and mouse BAD, the only other known Pim-2 substrate, revealed conserved amino acids preceding the phosphorylated serine residue. Stepwise replacement of the conserved residues produced a consensus sequence for Pim kinase recognition: RXRHXS. Pim-1 and Pim-2 catalyzed the phosphorylation of this recognition sequence 20-fold more efficiently than the original (K/R-K/R-R-K/R-L-S/T-a; a = small chain amino acid) Pim-1 phosphorylation site. The identification of the novel Pim kinase consensus sequence provides a more sensitive and versatile peptide based assay for screening modulators of Pim kinase activity.  相似文献   

15.
The central region of the N-myc protein has a characteristic amino acid sequence EDTLSDSDDEDD, which is very similar to those of particular domains of adenovirus E1A, human papilloma virus E7, Simian virus 40 large T, c-myc and L-myc proteins. Domains of these three viral oncoproteins have recently been shown to be specific binding sites for the tumor-suppressor gene retinoblastoma protein. We have noted that the sequence of serine followed by a cluster of acidic amino acids is exactly the same as that of a typical substrate of casein kinase II (CKII). Therefore, we investigated whether these nuclear oncoproteins are phosphorylated by CKII. For this purpose, we fused the beta-galactosidase and N-myc genes including this domain and expressed it in Escherichia coli cells. Several mutant N-myc genes, containing single amino acid substitutions in this domain, were also used to produce fused proteins. Strong phosphorylation by CKII was detected with the fused protein of wild-type N-myc. However, no phosphorylation of beta-galactosidase itself was observed and the phosphorylations of fused mutant proteins were low. Another fused N-myc protein containing most of the C-terminal region downstream of this acidic region was not phosphorylated by CKII. Analysis of phosphorylation sites in synthetic peptides of this acidic region identified the major sites phosphorylated by CKII as Ser261 and Ser263. On two-dimensional tryptic mapping of phosphorylated N-myc proteins, major spots of in vitro-labeled and in-vivo-labeled N-myc proteins were detected in the same positions. These results suggest that two serine residues of the acidic central region of the N-myc protein are phosphorylated by CKII in vivo as well as in vitro. The functional significance of this acidic domain is discussed.  相似文献   

16.
PAP-1 has been identified by us as a Pim-1-binding protein and has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). We have then shown that PAP-1 plays a role in pre-mRNA splicing. Because four causative genes for adRP, including PAP-1, Prp31, Prp8, and Prp3, encode proteins that function as splicing factors or splicing-modulating factors, we investigated the interaction of PAP-1 with Prp3p and Prp31p in this study. The results showed that PAP-1 interacted with Prp3p but not Prp31p in human cells and yeast, and that the basic region of PAP-1 and the C-terminal region of Prp3p, regions beside spots found in adRP mutations, were needed for binding. Furthermore, both Prp3p and a part of PAP-1 were found to be components of the U4/U6.U5-tri-snRNP complex, one form of the spliceosome, in Ba/F3 and K562 cells by analysis of sucrose density gradients, suggesting that PAP-1 is weakly associated with the spliceosome. These results also suggest that splicing factors implicated in adRP contribute alone or mutually to proper splicing in the retina and that loss of their functions leads to onset of adRP.  相似文献   

17.
Pim-1 is an oncogene-encoded serine/threonine kinase primarily expressed in hematopoietic and germ cell lines. Pim-1 kinase was originally identified in Maloney murine leukemia virus-induced T-cell lymphomas and is associated with multiple cellular functions such as proliferation, survival, differentiation, apoptosis, and tumorigenesis (Wang, Z., Bhattacharya, N., Weaver, M., Petersen, K., Meyer, M., Gapter, L., and Magnuson, N. S. (2001) J. Vet. Sci. 2, 167-179). The crystal structures of Pim-1 complexed with staurosporine and adenosine were determined. Although a typical two-domain serine/threonine protein kinase fold is observed, the inter-domain hinge region is unusual in both sequence and conformation; a two-residue insertion causes the hinge to bulge away from the ATP-binding pocket, and a proline residue in the hinge removes a conserved main chain hydrogen bond donor. Without this hydrogen bond, van der Waals interactions with the hinge serve to position the ligand. The hinge region of Pim-1 resembles that of phosphatidylinositol 3-kinase more closely than it does other protein kinases. Although the phosphatidylinositol 3-kinase inhibitor LY294002 also inhibits Pim-1, the structure of the LY294002.Pim-1 complex reveals a new binding mode that may be general for Ser/Thr kinases.  相似文献   

18.
The levels of Pim-1, a serine/threonine kinase, increase during phorbol myristate acetate (PMA)-induced myeloid cell differentiation. The tyrosine phosphatase PTP-U2S is also associated with PMA-induced differentiation of myeloid cells and has been shown to enhance differentiation and the onset of apoptosis. PTP-U2S contains a Pim-1 phosphorylation consensus sequence, KKRKLTN, which is efficiently phosphorylated by Pim-1. Immunoprecipitated PTP-U2S from U937 cells was phosphorylated by recombinant Pim-1, resulting in a decrease in its phosphatase activity. During PMA-induced differentiation, U937 cells transfected with the dominant negative Pim-1 underwent rapid differentiation and accelerated apoptosis. The opposite effect was observed for wild-type Pim-1. Our results, therefore, provide compelling evidence that Pim-1 functions to negatively regulate PMA-induced differentiation in part through the phosphorylation of PTP-U2S. Together these data suggest that Pim-1 phosphorylates PTP-U2S in vivo to decrease the phosphatase activity that may be necessary to prevent the premature onset of apoptosis following differentiation.  相似文献   

19.
Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase   总被引:5,自引:0,他引:5  
The serine/threonine kinase, Pim-1, appears to be involved in regulating proliferation, differentiation and cell survival of lymphoid and myeloid cells. In this study, we have found that amino acid residues 140-147 (RKRRQTSM) at the C-terminal end of p21(Cip1/WAF1), a cyclin-dependent kinase (CDK) inhibitor, constitute an ideal phosphorylation consensus sequence for Pim-1. We demonstrate that Pim-1 efficiently phosphorylates this peptide sequence as well as the p21 protein in vitro. We also demonstrate by pull-down assay and by immunoprecipitation that Pim-1 associates with p21. During phorbol ester-induced differentiation of U937 cells, both Pim-1 and p21 expression levels increase with Pim-1 levels increasing in both the nucleus and cytoplasm while p21 remains primarily cytoplasmic. Co-transfection of wild type p21 with wild type Pim-1 results in cytoplasmic localization of p21 while co-transfection of wild type p21 with kinase dead Pim-1 results in nuclear localization of p21. Consistent with the results from the phosphoamino acid assay, Pim-1 phosphorylates transfected p21 only on Thr(145) in p21-deficient human fibroblasts and this phosphorylation event results in the cytoplasmic localization of p21. These findings demonstrate that Pim-1 associates with and phosphorylates p21 in vivo, which influences the subcellular localization of p21.  相似文献   

20.
The known amino acid sequences at the two sites on phosphorylase kinase that are phosphorylated by cyclic AMP-dependent protein kinase were extended. The sequences of 42 amino acids around the phosphorylation site on the alpha-subunit and of 14 amino acids around the phosphorylation site on the beta-subunit were shown to be: alpha-subunit Phe-Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly-Gly-His-Ser-Leu-Gly-Ala-Asp-Leu-Met-Ser-Pro-Ser-Phe-Leu-Ser-Pro-Gly-Thr-Ser-Val-Phe(Ser,Pro,Gly)His-Thr-Ser-Lys; beta-subunit, Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-VALIle-Tyr-Glu-Pro-Leu-Lys. The sites on histone H2B which are phosphorylated by cyclic AMP-dependent protein kinase in vitro were identified as serine-36 and serine-32. The amino acid sequence in this region is: Lys-Lys-Arg-Lys-Arg-Ser32(P)-Arg-Lys-Glu-Ser36(P)-Tyr-Ser-Val-Tyr-Val- [Iwai, K., Ishikawa, K. & Hayashi, H. (1970) Nature (London) 226, 1056-1058]. Serine-36 was phosphorylated at 50% of the rate at which the beta-subunit of phosphorylase kinase was phosphorylated, and it was phosphorylated 6-7-fold more rapidly than was serine-32. The amino acid sequences when compared with those at the phosphorylation sites of other physiological substrates suggest that the presence of two adjacent basic amino acids on the N-terminal side of the susceptible serine residue may be critical for specific substrate recognition in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号