首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact chloroplasts isolated from greening cucumber (Cucumis sativus L. var Beit Alpha) cotyledons regenerated protochlorophyllide (Pchlide) in the dark with added cofactors from either exogenous glutamate or endogenous substrates. No other intermediates of the chlorophyll biosynthetic pathway accumulated. When inhibitors of 5-aminolevulinic acid (ALA) dehydratase were added, the Pchlide that failed to form was replaced by an excessive amount of ALA. When greening seedlings were returned to the dark, ALA-synthesizing activity in the isolated chloroplasts decreased dramatically and recovered if the dark-treated seedlings were again exposed to continuous white light prior to chloroplast isolation. Both the decline and the recovery of ALA-synthesizing activity were complete in approximately 50 minutes. Changes in chloroplast structure during in vivo light to dark and dark to light transitions (as evidenced by electron microscopy) were much slower. Exposing isolated chloroplasts from dark-treated seedlings to short white flashes before incubation transformed nearly all the endogenous Pchlide, but hardly stimulated ALA synthesis, suggesting that Pchlide does not act as a feed-back inhibitor on ALA synthesis. Chloroplasts isolated from dark-treated tissue did not form Pchlide from glutamate when incubated in the dark with added cofactors; moreover, the endogenous Pchlide did not turn over in organello. However, these chloroplasts did synthesize Pchlide from added ALA at the normal rate and synthesized ALA from glutamate at a reduced, but still significant, rate. Mg chelation was not affected by in vivo dark treatment.  相似文献   

2.
A brief pulse of red light accelerates chlorophyll accumulation upon subsequent transfer of dark-grown tomato (Lycopersicon esculentum) seedlings to continuous white light. Such potentiation of greening was compared in wild type and an aurea mutant W616. This mutant has been the subject of recent studies of phytochrome phototransduction; its dark-grown seedlings are deficient in phytochrome, and light-grown plants have yellow-green leaves. The rate of greening was slower in the mutant, but the extent (relative to the dark control) of potentiation by the red pulse was similar to that in the wild type. In the wild type, the fluence-response curve for potentiation of greening indicates substantial components in the VLF (very low fluence) and LF (low fluence) ranges. Far-red light could only partially reverse the effect of red. In the aurea mutant, only red light in the LF range was effective, and the effect of red was completely reversed by far-red light. When grown in total darkness, aurea seedlings are also deficient in photoconvertible PChl(ide). Upon transfer to white light, the aurea mutant was defective in both the abundance and light regulation of the light-harvesting chlorophyll a/b binding polypeptide(s) [LHC(II)]. The results are consistent with the VLF response in greening being mediated by phytochrome. Furthermore, the data support the hypothesis that light modulates LHC(II) levels through its control of the synthesis of both chlorophyll and its LHC(II) apoproteins. Some, but not all, aspects of the aurea phenotype can be accounted for by the deficiency in photoreception by phytochrome.  相似文献   

3.
Blue spruce (Picea pungens Engelm.) seedlings grow continuously when exposed to photoperiods exceeding 16 hours and enter dormancy within 4 weeks under photoperiods of 12 hours or less. Dormancy was prevented under 12-hour photoperiods by 2-hour light breaks of red light (1.70 μw/cm2 at 650 nm) or high intensity white light (2,164.29 μw/cm2 at 400 to 800 nm) given in the middle of the 12-hour night, and by continuous low intensity white light (204.76 μw/cm2 at 400 to 800 nm). Two-hour light breaks of far red light (1.80 μw/cm2 at 730 nm), red light followed by far red light, or low intensity white light were not effective in delaying dormancy. The results imply that the phytochrome system mediates the photoperiodic control of dormancy in blue spruce seedlings. The similarity of results obtained using the low intensity, long duration as against the high intensity, short duration light treatments suggests that the law of reciprocity applies in this response.  相似文献   

4.
5.
A brief pulse of red light eliminates or reduces the lag in chlorophyll accumulation that occurs when dark-grown pea seedlings are transferred to continuous white light. The red light pulse also induces the accumulation of specific mRNAs. We compared time courses, escape from reversal by far-red light, and fluence-response behavior for induction of mRNA for the light-harvesting chlorophyll a/b binding proteins (Cab mRNA) with those for induction of rapid chlorophyll accumulation in seedlings of Pisum sativum cv Alaska. In both cases the time courses of low fluence and very low fluence responses diverged from each other in a similar fashion: the low fluence responses continued to increase for at least 24 hours, while the very low fluence responses reached saturation by 8 to 16 hours. Both responses escaped from reversibility by far-red slowly, approaching the red control level after 16 hours. The fluence-response curve for the Cab mRNA increase, on the other hand, showed threshold and saturation at fluences 10-fold lower than threshold and saturation values for the greening response. Therefore, the level of Cab mRNA, as measured by the presence of sequences hybridizing to a cDNA probe, does not limit the rate of chlorophyll accumulation after transfer of pea seedlings to white light. The Cab mRNA level in the buds of seedlings grown under continuous red light remained high even when the red fluence rate was too low to allow significant greening. In this case also, abundance of Cab mRNA cannot be what limits chlorophyll accumulation.  相似文献   

6.
Irradiation of excised stem segments from de-etiolated seedlings of Cuscuta planiflora for 24 h with mixtures of red and far-red light with red to far-red ratios between 0.02 to 1.0 enhanced coiling and formation of prehaustoria. Maximum number of prehaustoria were recorded when red:far-red was near 0.1. Coiling and prehaustoria were observed whenever estimated in vivo Pfr/Ptotal at photoequilibrium was between 0.06 and 0.67. Irradiation of excised stem segments from white light grown seedlings with 12 h blue light also promoted coiling and prehaustoria formation after another 38 h in darkness. Coiling and prehaustoria were not observed in segments pulsed with 10 min red light at the end of 12 h in blue light. Coiling and prehaustoria were observed after photoreversible end-of-day far-red/red/far-red pulses but not after red/far-red/red pulses. A far-red pulse may not reverse inhibition by end-of-day red pulse when far-red is given more than 12 h after the red pulse.  相似文献   

7.
The activity of NADP and O2 photoreduction by water is essentially higher in chloroplasts isolated from pea seedlings (Pisum sativum L.) grown under blue light as compared with that from plants grown under red light. In contrast, the photoreduction of NADP and O2 with photosystem I only is practically the same or even lower in chloroplasts isolated from plants grown under blue light. The addition of plastocyanin does not affect the rate or the extent of NADP photoreduction by water in the chloroplasts isolated from plants grown under blue light, whereas it sharply activates NADP reduction in the chloroplasts isolated from plants grown under red light. The extent of the light-induced oxidation of cytochrome f is appreciably higher in chloroplasts isolated from plants grown under blue light. Cytochrome b559 plays the predominant role in the oxidoreductive reactions of these chloroplasts. Furthermore, the fluorescence measurements indicate more effective transfer of excitation energy from chlorophyll to the photosystem II reaction center in chloroplasts isolated from plants grown under blue light.  相似文献   

8.
Spores of Polytrichum conwtuine were grown on a mineral salt solution with or without sucrose and exposed to continuous white light, continuous darkness, red light and/or far-red light. With sucrose, germination and filament growth occurred in all conditions, Without sucrose, germination and filament growth occurred only in light. Two phytochrome mediated responses of the chloroplasts were demonstrated. Chloroplast replication occurred in continuous white light and red light of 15 min/6 hours. In continuous darkness and in far red light of 15 min/6 hours, the size of the chloroplasts increased; but no replication occurred. Both the chloroplast replication and chloroplast size were red, far-red light reversible. When changed from one continuous light environment to another, a lag period occurred before the chloroplasts responded to the new environment. Electron micrographs of sections and in vivo staining of the chloroplasts with iodine solution demonstrated that the change in size of the chloroplasts was at least partially due to the synthesis and degradation of starch.  相似文献   

9.
A pulse of red light acting through phytochrome accelerates the formation of chlorophyll upon subsequent transfer of dark-grown seedlings to continuous white light. Specific antibodies were used to follow the accumulation of representative subunits of the major photosynthetic complexes during greening of seedlings of tomato (Lycopersicon esculentum). The time course for accumulation of the various subunits was compared in seedlings that received a red light pulse 4 h prior to transfer to continuous white light and parallel controls that did not receive a red light pulse. The light-harvesting chlorophyll-binding proteins of photosystem II (LHC II), the 33-kD extrinsic polypeptide of the oxygen-evolving complex (OEC1), and subunit II of photosystem I (psaD gene product) all increased in the light, and did so much faster in seedlings that received the inductive red light pulse. The red light pulse had no significant effect on the abundance of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), nor on several plastid-encoded polypeptides: the large subunit of Rubisco, the β subunit of the CF1 complex of plastid ATPase, and the 43- and 47-kD subunits of photosystem II (CP43, CP47). Subunits I (cytochrome b6f) and III (Rieske Fe-S protein) of the cytochrome b6f complex showed a small or no increase as a result of the red pulse. The potentiation of greening by a pulse of red light, therefore, is not expressed uniformly in the abundance of all the photosynthetic complexes and their subunits.  相似文献   

10.
Developed pine seedlings synthesize chlorophyll in darkness. Their photosystem II reducing capacity is very low. The development of chloroplast structure and of photophosphorylation ability has been studied in plastids isolated from Pinus nigra (var. austriaca) developed for 14 days under different spectral compositions of light as compared with chloroplasts isolated from seedlings grown under white light or in darkness. Chloroplast structure was studied by electron microscopy. Cyclic and non-cyclic photophosphorylation were studied under white light. The spectral bands which are efficient for the development of granal structures are different from those needed to make photosystem II functional: red light makes photosystem II functional but does not permit the formation of granal structure, and under yellow light the granal structure develops but photosystem II is not fully functional. Orange light alone fulfils both these purposes. The spectral band around 650 nm seems effective in making the photosystem II functional.  相似文献   

11.
Cucumber (Cucumis sativus L., cv Poinsette) plants were sprayed with 20 millimolar 5-aminolevulinic acid and then incubated in the dark for 14 hours. The intact chloroplasts were isolated from the above plants in the dark and were exposed to weak light (250 micromoles per square meter per second). Within 30 minutes, photosystem II activity was reduced by 50%. The singlet oxygen (1O2) scavengers, histidine and sodium azide (NaN3) significantly protected against the damage caused to photosystem II. The hydroxyl radical scavenger formate failed to protect the thylakoid membranes. The production of 1O2 monitored as N,N-dimethyl p-nitrosoaniline bleaching increased as a function of light exposure time of treated chloroplasts and was abolished by the 1O2 quencher, NaN3. Membrane lipid peroxidation monitored as malondialdehyde production was also significantly reduced when chloroplasts were illuminated in the presence of NaN3 and histidine. Protochlorophyllide was the most abundant pigment accumulated in intact chloroplasts isolated from 5-aminolevulinic acid-treated plants and was probably acting as type II photosensitizer.  相似文献   

12.
The pigment content and rates of primary photosynthetic reactions were determined in chloroplasts of 14-day-old pine (Pinus silvestris L.) seedlings grown in light and darkness. In addition, the functional activities were investigated in chloroplasts from dark-grown seedlings exposed to white, red ( = 670 nm), and red + far-red ( = 748 nm) light. Dark-grown seedlings were capable of performing the Hill reaction, noncyclic photophosphorylation, and phenazine methosulfate–supported photophosphorylation, although the reaction rates in chloroplasts from dark-grown plants were considerably lower than in preparations from light-grown plants. Light treatment of dark-grown seedlings rapidly activated the photoreduction of ferricyanide and photophosphorylation, while the additional accumulation of green pigments started only after a lag period of two hours. Preirradiation of dark-grown seedlings with red light stimulated the formation of pigments, especially chlorophyll b, as well as the functional activity of chloroplasts. When far-red light was applied after red-light exposure, the processes examined were inhibited. It is concluded that accumulation of the light-harvesting complex and functional activities of chloroplasts at the photosystem II level in pine seedlings are controlled by the phytochrome.  相似文献   

13.
Surrey K 《Plant physiology》1967,42(3):421-424
Lipoxidase, in the cotyledons of squash (Cucurbita moscata) seedlings grown in the dark, reached its peak activity on the fifth day and then declined to its lowest activity on the eighth day. Under continuous irradiation, the rate of enzyme disappearance was accelerated by red (655 mμ) and was retarded by far-red (735 mμ) radiation. Acceleration of enzyme disappearance caused by red light was reversed repeatedly by far-red light in seedlings that received an initial exposure to red radiation. These responses were independent of the duration of irradiation at each of the alternating wavebands. No change was observed when the white light was administered either 24 hours before or 24 hours after the red, far-red treatment.

The lipoxidase system of the seedlings given an initial exposure to far-red radiation also responded reversibly to alternating far-red, red extended exposures, but it failed to respond reversibly when short exposures were employed. Similarly, no change occurred in these seedlings when either pre- or post-treatment with the white light was applied.

These results demonstrate that the capacity of lipoxidase to act reversibly depends primarily on the duration of exposure and on the kind of light (red or far-red) to which the seedlings were exposed initially. In spite of these variations, lipoxidase metabolism can be considered an additional biochemical manifestation of red, far-red reaction that operates in the photomorphogenesis of plants.

  相似文献   

14.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

15.
Vassey TL 《Plant physiology》1988,88(3):540-542
The extractable activity of sucrose phosphate synthase was determined in etiolated seedlings of maize (Zea mays L.), soybean (Glycine max [L.] Merr.), and sugar beet (Beta vulgaris L.) following treatments of changing light quality. A 30-minute illumination of 30 microeinsteins per square meter per second white light produced a three-fold increase in sucrose phosphate synthase activity at 2 hours postillumination when compared to seedlings maintained in total darkness. Etiolated maize seedlings treated with 3.6 microeinsteins per square meter per second of red and far-red light showed a 50% increase and a 50% decrease in sucrose phosphate synthase activity, respectively, when compared to etiolated maize seedlings treated with white light. Maize seedlings exposed for 30 minutes to red followed by 30 minutes to far-red showed an initial increase in sucrose phosphate synthase activity followed by a rapid decrease to control level. Neither soybean or sugar beet sucrose phosphate synthase responded to the 30-minute illumination of white light. Phytochrome is involved in sucrose phosphate synthase regulation in maize, whereas it is not responsible for changes in sucrose phosphate synthase activity in soybean or sugar beet.  相似文献   

16.
Dark-grown pea seedlings (Pisum sativum L.) were irradiated for a short period each day with low intensity red light (662 nm), red light immediately followed by far red light (730 nm), or far red light alone. Other plants were transferred to a white light regime (14 hours light/10 hours dark). There was no change in the amount of RNA in the tissue on a fresh weight basis after the various treatments. However, compared with dark-grown seedlings, those plants irradiated with red light showed an increase in the net RNA content per stem apex. In addition there was a two- to three-fold increase in ribosomal RNA of the etioplasts relative to the total ribosomal RNA. These increases were comparable to those found in plants grown in the white light regime. The changes were much smaller if the dark-grown plants were irradiated either with red light followed by far red light, or with far red light alone. Thus continuous light is not essential for the production of ribosomal RNA in plastids, and the levels of ribosomal RNA found in chloroplasts can also be attained in etioplasts of pea leaves in the dark provided the leaf phytochrome is maintained in its active form.  相似文献   

17.
The effect of light on the abundance of β-tubulin mRNA was measured in etiolated Avena sativa L. and Hordeum vulgare L. seedlings. Slot blot analysis employing an oat β-tubulin cDNA clone was used to measure β-tubulin mRNA levels. White light induced a 45% decrease in oat β-tubulin mRNA abundance by 2 hours after transfer. A saturating red light pulse induced 40 and 55% decreases in β-tubulin mRNA levels in oats and barley, respectively. Recovery of β-tubulin mRNA levels was observed after a red light pulse but not after transfer to continuous white light. The red light induced decrease in oat β-tubulin mRNA abundance was not reversible by a subsequent far-red light treatment. The mesocotyl portion of etiolated oat seedlings exhibited a more dramatic decrease in β-tubulin mRNA abundance in response to red light than did the coleoptile portion. The results indicate that the well-documented effects of red light on the growth of etiolated seedlings are accompanied by changes in the expression of the β-tubulin genes.  相似文献   

18.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

19.
There appears to be an orderly transition from one photosensitive state to another in light-controlled stem elongation in the garden pea, Pisum sativum L. cv. Alaska. Stem elongation in dark-grown plants is known to be phytochrome-controlled. However, seedlings are insensitive to phytochrome after a red light pretreatment. An action spectrum for inhibition in these seedlings has peaks at 440 and 620 nm. Protochlorophyll is suggested as the photoreceptor. If these red pretreated seedlings are further exposed to white light, sensitivity to 440 to 620 nm light is lost. Promotion by blue-green light is the only photoresponse shown by these seedlings. Inhibition of completely white light-grown seedlings required simultaneous exposure to high intensity blue light and 600 nm light.  相似文献   

20.
A study of the kinetics of chlorophyll (Chl) synthesis in cotyledons of etiolated cucumber seedlings ( Cucumis sativus L . cv. Delilah) treated with 5×10-5 M -ben-zyladenine (BA) showed that cytokinin, like a red light pulse, could inhibit as well as promote pigment accumulation depending on the length of the dark period following induction. Spraying intact, dark-grown seedlings with BA, 24 h prior to white light exposure, eliminated the lag phase in Chl synthesis, while treatment with hormone 72 h before greening not only delayed the onset of synthesis, but it also reduced the amount of Chl accumulated after 24 h continuous white light. Impairment of Chl formation was correlated with inhibited regeneration of protochlorophyll and delayed appearance of the light harvesting Chl alb polypeptide. Application of σ-aminolevulinic acid (15 m M ) 2 h before white light exposure shortened the lag phase in Chl synthesis in control as well as in inhibited cotyledons, but the adverse effect of the red light and BA treatments on long-term Chl accumulation (24 h) was not reversed. Application of glutamate did not stimulate Chl production. Simultaneous treatment with hormone and red light 72 h before greening enhanced their separate inhibitory effects on Chl synthesis, but when given together 24 h prior to white light, their promotive effects on pigment accumulation were not additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号