首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Cystic fibrosis (CF) patients suffer from a defect in hydration of mucosal membranes due to mutations in the cystic fibrosis transmembrane regulator (CFTR), an apical chloride channel in mucosal epithelia. Disease expression in CF knockout mice is organ specific, varying with the level of expression of calcium activated Cl(-) channels (CLCA). Therefore, restoring transepithelial Cl(-) secretion by augmenting alternate Cl(-) channels, such as CLCA, could be beneficial. However, CLCA-mediated Cl(-) secretion is transient, due in part to the inhibitory effects of myo-inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P(4)]. This suggests that antagonists of Ins(3,4,5,6)P(4) could be useful in treatment of CF. We have, therefore, synthesized a series of membrane-permeant Ins(3,4,5,6)P(4) derivatives, carrying alkyl substituents on the hydroxyl groups and screened them for effects on Cl(-) secretion in a human colonic epithelial cell line, T(84). While membrane-permeant Ins(3,4,5,6)P(4) derivatives had no direct effects on carbachol-stimulated Cl(-) secretion, Ins(3,4,5,6)P(4) derivatives, but not enantiomeric Ins(1,4,5,6)P(4) derivatives, reversed the inhibitory effect of Ins(3,4,5,6)P(4) on subsequent thapsigargin activation of Cl(-) secretion. The extent of the antagonistic effect of the Ins(3,4,5,6)P(4) derivatives varied with the position of the alkyl substituents. Derivatives with a cyclohexylidene ketal or a butyl-chain at the 1-position reversed the Ins(3,4,5,6)P(4)-mediated inhibition of Cl(-) secretion by up to 96 and 85%, respectively, whereas butylation of the 1- and 2-position generated a reversal effect of only 65%. Derivatives carrying the butyl chain only at the 2-position showed no antagonistic effect. These data: (1) Support the hypothesis that Ins(3,4,5,6)P(4) stereospecifically inhibits Ca(2+) activated Cl(-) secretion and that Ins(3,4,5,6)P(4) mediates most, if not all of the cholinergic-mediated inhibition of chloride secretion in T(84) cells; (2) Demonstrate Ins(3,4,5,6)P(4)-mediated inhibition can be completely reversed with rationally designed membrane-permeant Ins(3,4,5,6)P(4) antagonists; (3) Demonstrate that a SAR for membrane-permeant Ins(3,4,5,6) P(4) antagonists can be generated and screened in a physiologically relevant cell-based assay; (4) Indicate that Ins(3,4,5,6)P(4) derivatives could serve as a starting point for the development of therapeutics to treat cystic fibrosis.  相似文献   

2.
Regulation of Cl(-) channel conductance by Ins(3,4,5,6)P(4) provides receptor-dependent control over salt and fluid secretion, cell volume homeostasis, and electrical excitability of neurones and smooth muscle. Ignorance of how Ins(3,4,5,6)P(4) is synthesized has long hindered our understanding of this signaling pathway. We now show Ins(3,4,5,6)P(4) synthesis by Ins(1,3,4,5,6)P(5) 1-phosphatase activity by an enzyme previously characterized as an Ins(3,4,5,6)P(4) 1-kinase. Rationalization of these phenomena with a ligand binding model unveils Ins(1,3,4)P(3) as not simply an alternative kinase substrate, but also an activator of Ins(1,3,4,5,6)P(5) 1-phosphatase. Stable overexpression of the enzyme in epithelial monolayers verifies its physiological role in elevating Ins(3,4,5,6)P(4) levels and inhibiting secretion. It is exceptional for a single enzyme to catalyze two opposing signaling reactions (1-kinase/1-phosphatase) under physiological conditions. Reciprocal coordination of these opposing reactions offers an alternative to general doctrine that intracellular signals are regulated by integrating multiple, distinct phosphatases and kinases.  相似文献   

3.
ClC Cl(-) channels in endosomes, synaptosomes, lysosomes, and beta-cell insulin granules provide charge neutralization support for the functionally indispensable acidification of the luminal interior by electrogenic H(+)-ATPases (Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. (2002) Physiol. Rev. 82, 503-568). Regulation of ClC activity is, therefore, of widespread biological significance (Forgac, M. (1999) J. Biol. Chem. 274, 12951-12954). We now ascribe just such a regulatory function to the increases in cellular levels of inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P(4)) that inevitably accompany activation of the ubiquitous Ins(1,4,5)P(3) signaling pathway. We used confocal imaging to record insulin granule acidification in single mouse pancreatic beta-cells. Granule acidification was reduced by perfusion of single cells with 10 microm Ins(3,4,5,6)P(4) (the concentration following receptor activation), whereas at 1 microm ("resting" levels), Ins(3,4,5,6)P(4) was ineffective. This response to Ins(3,4,5,6)P(4) was not mimicked by 100 microm Ins(1,4,5,6)P(4) or by 100 microm Ins(1,3,4,5,6)P(5). Ins(3,4,5,6)P(4) did not affect granular H(+)-ATPase activity or H(+) leak, indicating that Ins(3,4,5,6)P(4) instead inhibited charge neutralization by ClC. The Ins(3,4,5,6)P(4)-mediated inhibition of vesicle acidification reduced exocytic release of insulin as determined by whole-cell capacitance recordings. This may impinge upon type 2 diabetes etiology. Regulatory control over vesicle acidification by this negative signaling pathway in other cell types should be considered.  相似文献   

4.
Ins(3,4,5,6)P(4) inhibits plasma membrane Cl(-) flux in secretory epithelia [1]. However, in most other mammalian cells, receptor-dependent elevation of Ins(3,4,5,6)P(4) levels is an "orphan" response that lacks biological significance [2]. We set out to identify Cl(-) channel(s) and/or transporter(s) that are regulated by Ins(3,4,5,6)P4 in vivo. Several candidates [3-5] were excluded through biophysical criteria, electrophysiological analysis, and confocal immunofluorescence microscopy. Then, we heterologously expressed ClC-3 in the plasma membrane of HEK293-tsA201 cells; whole-cell patch-clamp analysis showed Ins(3,4,5,6)P4 to inhibit Cl(-) conductance through ClC-3. Next, we heterologously expressed ClC-3 in the early endosomal compartment of BHK cells; by fluorescence ratio imaging of endocytosed FITC-transferrin, we recorded intra-endosomal pH, an in situ biosensor for Cl(-) flux across endosomal membranes [6]. A cell-permeant, bioactivatable Ins(3,4,5,6)P4 analog elevated endosomal pH from 6.1 to 6.6, reflecting inhibition of ClC-3. Finally, Ins(3,4,5,6)P(4) inhibited endogenous ClC-3 conductance in postsynaptic membranes of neonatal hippocampal neurones. Among other ClC-3 functions that could be regulated by Ins(3,4,5,6)P4 are tumor cell migration [7], apoptosis [8], and inflammatory responses [9]. Ins(3,4,5,6)P4 is a ubiquitous cellular signal with diverse biological actions.  相似文献   

5.
Does inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P(4)) inhibit apical Ca(2+)-activated Cl(-) conductance (CaCC)? We studied this question using human CFPAC-1 pancreatoma cells grown in polarized monolayers. Cellular Ins(3,4,5,6)P(4) levels were acutely sensitive to purinergic receptor activation, rising 3-fold within 1 min of agonist addition. Intracellular Ins(3,4,5,6)P(4) levels were therefore specifically elevated, independently of receptor activation, by incubating cells with a cell-permeant bioactivable analogue, 1,2-di-O-butyl-myo-inositol 3,4,5,6-tetrakisphosphate octakis(acetoxymethyl)ester (Bt(2)Ins (3,4,5,6)P(4)/AM). The latter inhibited Ca(2+)-activated Cl(-) secretion by 60%. We next used nystatin to selectively permeabilize the basolateral membrane to monovalent anions and cations, thereby preventing this membrane from electrochemically dominating ion movements through the apical membrane. Thus, we studied autonomous regulation of apical Cl(-) channels in situ. The properties of Cl(-) flux across the apical membrane were those expected of CaCC: niflumic acid sensitivity, outward rectification, and 2-fold greater permeability of I(-) over Cl(-). Following nystatin-treatment, we elevated intracellular levels of Ins(3,4,5,6)P(4) with either purinergic agonists or with Bt(2)Ins(3,4,5,6)P(4)/AM. Both protocols inhibited Ca(2+)-activated Cl(-) secretion (up to 70%). These studies provide the first demonstration that, in a physiologically relevant context of a polarized monolayer, there is an apical, Ins(3,4,5,6)P(4)-inhibited CaCC.  相似文献   

6.
Ca2+-activated Cl- channels are inhibited by inositol 3,4,5, 6-tetrakisphosphate (Ins(3,4,5,6)P4) (Xie, W., Kaetzel, M. A., Bruzik, K. S., Dedman, J. R., Shears, S. B., and Nelson, D. J. (1996) J. Biol. Chem. 271, 14092-14097), a novel second messenger that is formed after stimulus-dependent activation of phospholipase C (PLC). In this study, we show that inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) is the specific signal that ties increased cellular levels of Ins(3,4,5,6)P4 to changes in PLC activity. We first demonstrated that Ins(1,3,4)P3 inhibited Ins(3,4,5,6)P4 1-kinase activity that was either (i) in lysates of AR4-2J pancreatoma cells or (ii) purified 22,500-fold (yield = 13%) from bovine aorta. Next, we incubated [3H]inositol-labeled AR4-2J cells with cell permeant and non-radiolabeled 2,5,6-tri-O-butyryl-myo-inositol 1,3, 4-trisphosphate-hexakis(acetoxymethyl) ester. This treatment increased cellular levels of Ins(1,3,4)P3 2.7-fold, while [3H]Ins(3, 4,5,6)P4 levels increased 2-fold; there were no changes to levels of other 3H-labeled inositol phosphates. This experiment provides the first direct evidence that levels of Ins(3,4,5,6)P4 are regulated by Ins(1,3,4)P3 in vivo, independently of Ins(1,3,4)P3 being metabolized to Ins(3,4,5,6)P4. In addition, we found that the Ins(1, 3,4)P3 metabolites, namely Ins(1,3)P2 and Ins(3,4)P2, were >100-fold weaker inhibitors of the 1-kinase compared with Ins(1,3,4)P3 itself (IC50 = 0.17 microM). This result shows that dephosphorylation of Ins(1,3,4)P3 in vivo is an efficient mechanism to "switch-off" the cellular regulation of Ins(3,4,5,6)P4 levels that comes from Ins(1,3, 4)P3-mediated inhibition of the 1-kinase. We also found that Ins(1,3, 6)P3 and Ins(1,4,6)P3 were poor inhibitors of the 1-kinase (IC50 = 17 and >30 microM, respectively). The non-physiological trisphosphates, D/L-Ins(1,2,4)P3, inhibited 1-kinase relatively potently (IC50 = 0.7 microM), thereby suggesting a new strategy for the rational design of therapeutically useful kinase inhibitors. Overall, our data provide new information to support the idea that Ins(1,3,4)P3 acts in an important signaling cascade.  相似文献   

7.
Ins(1,4,5,6)P4, a biologically active cell constituent, was recently advocated as a substrate of human Ins(3,4,5,6)P4 1-kinase (hITPK1), because stereochemical factors were believed relatively unimportant to specificity [Miller, G.J., Wilson, M.P., Majerus, P.W. and Hurley, J.H. (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-triphosphate 5/6-kinase. Mol. Cell. 18, 201-212]. Contrarily, we provide three examples of hITPK1 stereospecificity. hITPK1 phosphorylates only the 1-hydroxyl of both Ins(3,5,6)P3 and the meso-compound, Ins(4,5,6)P3. Moreover, hITPK1 has >13,000-fold preference for Ins(3,4,5,6)P4 over its enantiomer, Ins(1,4,5,6)P4. The biological significance of hITPK1 being stereospecific, and not physiologically phosphorylating Ins(1,4,5,6)P4, is reinforced by our demonstrating that Ins(1,4,5,6)P4 is phosphorylated (K(m) = 0.18 microM) by inositolphosphate-multikinase.  相似文献   

8.
Avian erythrocytes were incubated with myo-[3H]inositol for 6-7 h and with [32P]Pi for the final 50-90 min of this period. An acid extract was prepared from the prelabelled erythrocytes, and the specific radioactivities of the gamma-phosphate of ATP and of both the myo-inositol moieties (3H, d.p.m./nmol) and the individual phosphate groups (32P, d.p.m./nmol) of [3H]Ins[32P](1,3,4,6)P4,[3H]Ins[32P](1,3,4,5)P4, [3H]Ins[32P](3,4,5,6)P4 and [3H]Ins[32P](1,3,4,5,6)P5 were determined. The results provide direct confirmation that one of the cellular InsP4 isomers is Ins(1,3,4,5)P4 which is synthesized by sequential phosphorylation of the 1,4,5 and 3 substitution sites of the myo-Ins moiety, precisely as previously deduced [Batty, Nahorski & Irvine (1985) Biochem. J. 232, 211-215; Irvine, Letcher, Heslop & Berridge (1986) Nature (London) 320, 631-634]. This is compatible with the proposed synthetic route from PtdIns via PtdIns4P, PtdIns(4,5)P2 and Ins(1,4,5)P3. The data also suggest that, in avian erythrocytes, the principle precursor of Ins(1,3,4,5,6)P5 is Ins(3,4,5,6)P4. Furthermore, if the gamma- (and/or beta-) phosphate of ATP is the precursor of the phosphate moieties of Ins(3,4,5,6)P4, then this isomer must be derived from the phosphorylation of Ins(3,4,6)P3. If the gamma- (and/or beta-) phosphate of ATP similarly acts as the ultimate precursor to all of the phosphates of Ins(1,3,4,6)P4, then, in intact avian erythrocytes, the main precursor of Ins(1,3,4,6)P4 is Ins(1,4,6)P3. This contrasts with the expectation, based on results with cell-free systems, that Ins(1,3,4,6)P4 is synthesized by the direct phosphorylation of Ins(1,3,4)P3.  相似文献   

9.
Brearley CA  Hanke DE 《Plant physiology》2000,122(4):1209-1216
Using a permeabilization strategy to introduce Ins(3,4,5,6) P(4) into mesophyll protoplasts of Commelina communis, we have identified Ins(3,4,5,6) P(4) 1-kinase activity in mesophyll cells. Multiple InsP(3) isomers were identified in Spirodela polyrhiza and Arabidopsis. Only two of these, Ins(1,2,3) P(3) and Ins(3,4,6) P(3), have previously been identified in plants and only in monocots. The isomers detected in S. polyrhiza included D- and/or L-Ins(3,4,5) P(3), D- and/or L-Ins(3,5,6) P(3), and D- and/or L-Ins(2,4,5) P(3). Ins(1,4,5) P(3), if present, was only a tiny fraction of total InsP(3) species. We have also identified inositol polyphosphate phosphatase activities, Ins(3,4,5,6) P(4) 6-phosphatase and Ins(3,4, 5, 6) P(4) 4-phosphatase, whose action on endogenous inositol polyphosphates explains the presence of D- and/or L-Ins(3,4,5) P(3) and D- and/or L-Ins(3,5,6) P(3) in mesophyll cells. Inositol trisphosphates identified in Arabidopsis include Ins(1,2,3) P(3) and D- and/or L-Ins(3,4,6) P(3), suggesting that dicots may share pathways of InsP(6) biosynthesis and breakdown in common with monocots.  相似文献   

10.
Stimulation of the human T-lymphocyte cell line Jurkat via the T-cell receptor/CD3 complex by an anti-CD3 antibody (OKT3) induced time-dependent changes in the intracellular concentrations of multiple inositol polyphosphate (InsPn) isomers. Quantitative mass analysis by anion-exchange HPLC and a recently developed postcolumn dye system (Mayr, G. W. (1988) Biochem. J. 254, 585-591) revealed basal intracellular concentrations between less than 5 pmol/10(9) cells for Ins(1,3,4,5)P4 and 6380 +/- 355 pmol/10(9) cells for InsP6. Time course analysis of samples from stimulated Jurkat T-cells showed an increase of Ins(1,3,4,5)P4 to 1125 +/- 125 pmol/10(9) cells within 10 min and remained elevated over more than 30 min. Moreover, increases of the intracellular concentrations of Ins(1,3,4,6)P4, Ins(1,4,5,6)P4, and/or Ins(3,4,5,6)P4 (determined as the enantiomeric mixture), Ins(1,3,4,5,6)P5, Ins(1,2,3,4,6)P5 and InsP6 were observed. In contrast, the concentration of Ins(1,2,4,5,6)P5 and/or Ins(2,3,4,5,6)P5 (determined as the enantiomeric mixture) decreased after stimulation. Using cytosolic extracts from Jurkat T-lymphocytes incubated with purified Ins(1,3,4,5,6)P5, Ins(1,2,3,4,6)P5, or Ins(1,2,4,5,6)P5/Ins(2,3,4,5,6)P5 three enzyme activities were observed. Ins(1,3,4,5,6)P5 was dephosphorylated by a phosphatase removing a phosphate group at the 1 and/or 3 position resulting in the formation of Ins(1,4,5,6)P4 and/or Ins(3,4,5,6)P4 (determined as the enantiomeric mixture). Ins(1,2,3,4,6)P5 was metabolized by a specific phosphatase that cleaved the phosphate group at the 2 position, thereby generating the product Ins(1,3,4,6)P4. On the other hand, Ins(1,2,4,5,6)P5/Ins(2,3,4,5,6)P5 was phosphorylated by a 1/3-kinase activity to InsP6. Together novel receptor-mediated metabolic pathways of inositol polyphosphates were demonstrated in human T-lymphocytes, and corresponding enzyme activities for the inositol pentakisphosphate metabolism were found in cell lysates.  相似文献   

11.
Infusion of inositol-3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4) from the patch pipette into the cytoplasm, produced a biphasic intracellular free Ca2+ concentration ([Ca2+]i) increase in ras-transformed NIH/3T3 (DT) cells. The Ins(3,4,5,6)P4-induced increase in DT cells depended upon extracellular Ca2+ and was enhanced by membrane hyperpolarization. Identical [Ca2+]i increases were observed with intracellular application of inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) and inositol-1,3,4,6-tetrakisphosphate but not with inositol-1,2,4,5-tetrakisphosphate, inositol-1,4,5-trisphosphate or inositol-1,3,4,5,6-pentakisphosphate. Stimulation of DT cells with bradykinin increased the levels of Ins(3,4,5,6)P4 and Ins(1,3,4,5)P4. These results suggest that Ins(3,4,5,6)P4 may serve as a second messenger for continuous Ca2+ influx along with other tetrakisphosphates downstream from bradykinin receptors in DT cells.  相似文献   

12.
We have studied the regulation of Ca(2+)-dependent chloride (Cl(Ca)) channels in a human pancreatoma epithelial cell line (CFPAC-1), which does not express functional cAMP-dependent cystic fibrosis transmembrane conductance regulator chloride channels. In cell-free patches from these cells, physiological Ca(2+) concentrations activated a single class of 1-picosiemens Cl(-)-selective channels. The same channels were also stimulated by a purified type II calmodulin-dependent protein kinase (CaMKII), and in cell-attached patches by purinergic agonists. In whole-cell recordings, both Ca(2+)- and CaMKII-dependent mechanisms contributed to chloride channel stimulation by Ca(2+), but the CaMKII-dependent pathway was selectively inhibited by inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P(4)). This inhibitory effect of Ins(3,4,5,6)P(4) on Cl(Ca) channel stimulation by CaMKII was reduced by raising [Ca(2+)] and prevented by inhibition of protein phosphatase activity with 100 nm okadaic acid. These data provide a new context for understanding the physiological relevance of Ins(3,4,5,6)P(4) in the longer term regulation of Ca(2+)-dependent Cl(-) fluxes in epithelial cells.  相似文献   

13.
Metabolic and signaling properties of an Itpk gene family in Glycine max   总被引:2,自引:0,他引:2  
Stiles AR  Qian X  Shears SB  Grabau EA 《FEBS letters》2008,582(13):1853-1858
We have cloned and characterized four Itpk genes from soybean. All four recombinant Itpk proteins showed canonical Ins(1,3,4)P3 5/6-kinase activity, but a kinetic analysis raised questions about its biological significance. Instead, we provide evidence that one alternative biological role for soybean Itpks is to interconvert the Cl(-) channel inhibitor, Ins(3,4,5,6)P4, and its metabolic precursor, Ins(1,3,4,5,6)P5, within a substrate cycle. The soybean Itpks also phosphorylated Ins(3,4,6)P3 to Ins(1,3,4,6)P4 which was further phosphorylated to Ins(1,3,4,5,6)P5 by soybean Ipk2. Thus, soybean Itpks may participate in an inositol lipid-independent pathway of InsP6 synthesis.  相似文献   

14.
1. A screen for agonists capable of stimulating the formation of inositol phosphates in erythrocytes from 5-day-old chickens revealed the presence of a population of phosphoinositidase C-linked purinergic receptors. 2. If chicken erythrocytes prelabelled with [3H]Ins were exposed to a maximal effective dose of adenosine 5'-[beta-thio]diphosphate for 30 s, the agonist-stimulated increment in total [3H]inositol phosphates was confined to [3H]Ins(1,4,5)P3, Ins(1,3,4,5)P4 and InsP2. After 40 min stimulation, the radiolabelling of nearly all of the [3H]inositol phosphates that have been detected in these extracts [Stephens, Hawkins & Downes (1989) Biochem. J. 262, 727-737] had risen. However, some of these increases [especially those in Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5] were accountable for almost entirely by increases in specific radioactivity rather than in mass. 3. The effect of purinergic stimulation on the rate of incorporation of [32P]Pi in the medium into the gamma-phosphate group of ATP and InsP4 and InsP5 was also measured. After 40 min stimulation, the incorporation of 32P into Ins(1,3,4,6)P4, Ins(1,3,4,5)P4, Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5 was significantly elevated, whereas the mass of the last two and the specific radioactivity of the gamma-phosphate of ATP were unchanged compared with control erythrocyte suspensions. 4. In control suspensions of avian erythrocytes, the specific radioactivity of the individual phosphate moieties of Ins(1,3,4,6)P4 increased through the series 1, 6, 4 and 3 [Stephens & Downes (1990) Biochem. J. 265, 435-452]. This pattern of 32P incorporation is not the anticipated outcome of 6-hydroxy phosphorylation of Ins(1,3,4)P3 [the assumed route of synthesis of Ins(1,3,4,6)P4]. Although adenosine [beta-thio]diphosphate significantly stimulated the accumulation of [3H]Ins(1,3,4)P3, and despite the fact that avian erythrocyte lysates were shown to possess a chromatographically distinct, soluble, ATP-dependent, Ins(1,3,4)P3 6-hydroxykinase activity, purinergic stimulation of intact cells did not significantly alter the pattern of incorporation of [32P]Pi into the individual phosphate moieties of Ins(1,3,4,6)P4. These results suggest that the route of synthesis of this inositol phosphate species is not changed during the presence of an agonist.  相似文献   

15.
The synthesis and the metabolism of inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4) are the responsibility of a single multifunctional kinase/phosphotransferase, ITPK1. This enzyme dynamically couples the cellular levels of Ins(3,4,5,6)P4 to the receptor-dependent hydrolysis of inositol lipids by phospholipase C. This is a biologically significant event because Ins(3,4,5,6)P4 regulates the conductance of a specialized class of chloride ion channels, which regulate many cellular functions including epithelial salt and fluid secretion, synaptic efficacy, bone remodelling, tumor cell migration, insulin release from pancreatic β-cells, and inflammatory responses. This review assesses the current state of our knowledge of this versatile and ubiquitous signalling cascade.  相似文献   

16.
Oscillatory growth of pollen tubes has been correlated with oscillatory influxes of the cations Ca(2+), H(+), and K(+). Using an ion-specific vibrating probe, a new circuit was identified that involves oscillatory efflux of the anion Cl(-) at the apex and steady influx along the tube starting at 12 microm distal to the tip. This spatial coupling of influx and efflux sites predicts that a vectorial flux of Cl(-) ion traverses the apical region. The Cl(-) channel blockers 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)benzoic acid completely inhibited tobacco pollen tube growth at 80 and 20 microM, respectively. Cl(-) channel blockers also induced increases in apical cell volume. The apical 50 micro m of untreated pollen tubes had a mean cell volume of 3905 +/- 75 microm(3). DIDS at 80 microM caused a rapid and lethal cell volume increase to 6206 +/- 171 microm(3), which is at the point of cell bursting at the apex. DIDS was further demonstrated to disrupt Cl(-) efflux from the apex, indicating that Cl(-) flux correlates with pollen tube growth and cell volume status. The signal encoded by inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P(4)] antagonized pollen tube growth, induced cell volume increases, and disrupted Cl(-) efflux. Ins(3,4,5,6)P(4) decreased the mean growth rate by 85%, increased the cell volume to 5997 +/- 148 microm(3), and disrupted normal Cl(-) efflux oscillations. These effects were specific for Ins(3,4,5,6)P(4) and were not mimicked by either Ins(1,3,4,5)P(4) or Ins(1,3,4,5,6)P(5). Growth correlation analysis demonstrated that cycles of Cl(-) efflux were coupled to and temporally in phase with cycles of growth. A role for Cl(-) flux in the dynamic cellular events during growth is assessed. Differential interference contrast microscopy and kymographic analysis of individual growth cycles revealed that vesicles can advance transiently to within 2 to 4 microm of the apex during the phase of maximally increasing Cl(-) efflux, which temporally overlaps the phase of cell elongation during the growth cycle. In summary, these investigations indicate that Cl(-) ion dynamics are an important component in the network of events that regulate pollen tube homeostasis and growth.  相似文献   

17.
In previous works, we synthesized a series of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) analogs, with a substituent on the second carbon of the inositol ring. Using these analogs, the Ins(1,4,5)P3 affinity media were also synthesized (Hirata, M., Watanabe, Y., Ishimatsu, T., Yanaga, F., Koga, T., and Ozaki, S. (1990) Biochem. Biophys. Res. Commun. 168, 379-386). When the cytosol fraction from the rat brain was applied to an Ins(1,4,5)P3 affinity column, an eluate with a 2 M NaCl solution was found to have remarkable Ins(1,4,5)P3-binding activity. The active fraction was further fractionated with gel filtration chromatography, and two proteins with an apparent molecular mass of 130 or 85 kDa were found to be Ins(1,4,5)P3-binding proteins but with no Ins(1,4,5)P3 metabolizing activities. Partial amino acid sequences determined after proteolysis and reversed-phase chromatography revealed that the protein with an apparent molecular mass of 85 kDa is the delta-isozyme of phospholipase C and that of 130 kDa has no sequence the same as the Ins(1,4,5)P3-recognizing proteins hitherto examined. Ins(1,4,5)P3 at concentrations greater than 1 microM strongly inhibited 85-kDa phospholipase C delta activity, without changing its dependence on the concentrations of free Ca2+ and H+. Among inositol phosphates examined, Ins(3,4,5,6)P4 inhibited the binding of [3H]Ins(1,4,5)P3 to the 130-kDa protein at much the same concentrations as seen with Ins(1,4,5)P3. This report seems to be the first evidence for the presence of soluble Ins(1,4,5)P3-binding proteins in the rat brain, one of which is the delta isozyme of phospholipase C.  相似文献   

18.
Our goal was to examine the sidedness of effects of the purinergic agonist, uridine 5'-triphosphate (UTP), on Cl(-) secretion in intestinal epithelial cells. We hypothesized that UTP might exert both stimulatory and inhibitory effects. All studies were conducted with T84 intestinal epithelial cells. UTP induced Cl(-) secretion in a concentration-dependent fashion. Responses to serosally added UTP were smaller and more transient than those evoked by mucosal addition, but there was no evidence that mucosal responses involved cAMP-dependent mechanisms. Pretreatment with serosal UTP inhibited subsequent Ca(2+)-dependent Cl(-) secretion induced by carbachol or thapsigargin, or secretion induced by mucosal UTP, in a manner that was reversed by a tyrosine kinase inhibitor. The inhibitory effect of serosal UTP on Cl(-) secretion was not additive with that of carbachol, known to exert its inhibitory effects through the tyrosine kinase-dependent generation of inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P(4)]. Moreover, responses to both serosal and mucosal UTP were reduced by prior treatment of T84 cells with carbachol. Finally, serosal, but not mucosal, UTP evoked an increase in Ins(3,4,5,6)P(4). We conclude that different signaling mechanisms lie downstream of apical and basolateral UTP receptors in epithelial cells, at least in the intestine. These differences may be relevant to the use of UTP as a therapy in cystic fibrosis.  相似文献   

19.
Reduced phytic acid content in seeds is a desired goal for genetic improvement in several crops. Low-phytic acid mutants have been used in genetic breeding, but it is not known what genes are responsible for the low-phytic acid phenotype. Using a reverse genetics approach, we found that the maize (Zea mays) low-phytic acid lpa2 mutant is caused by mutation in an inositol phosphate kinase gene. The maize inositol phosphate kinase (ZmIpk) gene was identified through sequence comparison with human and Arabidopsis Ins(1,3,4)P(3) 5/6-kinase genes. The purified recombinant ZmIpk protein has kinase activity on several inositol polyphosphates, including Ins(1,3,4)P(3), Ins(3,5,6)P(3), Ins(3,4,5,6)P(4), and Ins(1,2,5,6)P(4). The ZmIpk mRNA is expressed in the embryo, the organ where phytic acid accumulates in maize seeds. The ZmIpk Mutator insertion mutants were identified from a Mutator F(2) family. In the ZmIpk Mu insertion mutants, seed phytic acid content is reduced approximately 30%, and inorganic phosphate is increased about 3-fold. The mutants also accumulate myo-inositol and inositol phosphates as in the lpa2 mutant. Allelic tests showed that the ZmIpk Mu insertion mutants are allelic to the lpa2. Southern-blot analysis, cloning, and sequencing of the ZmIpk gene from lpa2 revealed that the lpa2-1 allele is caused by the genomic sequence rearrangement in the ZmIpk locus and the lpa2-2 allele has a nucleotide mutation that generated a stop codon in the N-terminal region of the ZmIpk open reading frame. These results provide evidence that ZmIpk is one of the kinases responsible for phytic acid biosynthesis in developing maize seeds.  相似文献   

20.
Josefsen L  Bohn L  Sørensen MB  Rasmussen SK 《Gene》2007,397(1-2):114-125
OsIpk and HvIpk, inositol phosphate kinases, were cloned from rice (Oryza sativa L. var. indica, IR64) and barley (Hordeum vulgare) respectively. Sequence alignment showed that they belong to the ATP-grasp family, which includes inositol 1,3,4-trisphosphate 5/6-kinase from humans and Arabidopsis. Residues that are binding sites for ATP and coordinate magnesium in absence or presence of inositol phosphate are conserved and in total 23 residues are invariant among the twelve aligned inositol phosphate kinases. The genes were heterologously expressed in Escherichia coli and kinase activity assays with 17 different isomers of inositol mono-/di-/tri-/tetra-/pentaphosphate as well as phytate were performed. The strongest activity for both kinases was observed with Ins(3,4,5,6)P(4), which candidates as the primary substrate for these kinases in plants. Several species-specific differences between the two recombinant Ipks were observed. Rice OsIpk showed detectable kinase activity towards eight different substrates, whereas barley HvIpk showed kinase activity with all the substrates including inositol mono- and bisphosphates. HvIpk showed 3-kinase activity towards the Ins(1,4,5)P(3) substrate and it also interconverted the two substrates Ins(1,3,4,5)P(4) and Ins(1,3,4,6)P(4) by isomerase activity, which was not observed for the rice homologue. Both OsIpk and HvIpk had no detectable 2-kinase activity. Furthermore, the two Ipks showed phosphatase activity towards several inositol phosphates. Expression analysis by RT-PCR demonstrated that the Ipk gene was equally expressed in different tissues and developmental stages. Taken together, these results show that the Ipk kinase plays a significant role in the inositol phosphate interacting network in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号