首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

3.
Autophagy is a self-digestion process that degrades intracellular structures in response to stresses leading to cell survival. When autophagy is prolonged, this could lead to cell death. Generation of reactive oxygen species (ROS) through oxidative stress causes cell death. The role of autophagy in oxidative stress-induced cell death is unknown. In this study, we report that two ROS-generating agents, hydrogen peroxide (H(2)O(2)) and 2-methoxyestradiol (2-ME), induced autophagy in the transformed cell line HEK293 and the cancer cell lines U87 and HeLa. Blocking this autophagy response using inhibitor 3-methyladenine or small interfering RNAs against autophagy genes, beclin-1, atg-5 and atg-7 inhibited H(2)O(2) or 2-ME-induced cell death. H(2)O(2) and 2-ME also induced apoptosis but blocking apoptosis using the caspase inhibitor zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone) failed to inhibit autophagy and cell death suggesting that autophagy-induced cell death occurred independent of apoptosis. Blocking ROS production induced by H(2)O(2) or 2-ME through overexpression of manganese-superoxide dismutase or using ROS scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt decreased autophagy and cell death. Blocking autophagy did not affect H(2)O(2)- or 2-ME-induced ROS generation, suggesting that ROS generation occurs upstream of autophagy. In contrast, H(2)O(2) or 2-ME failed to significantly increase autophagy in mouse astrocytes. Taken together, ROS induced autophagic cell death in transformed and cancer cells but failed to induce autophagic cell death in non-transformed cells.  相似文献   

4.
Apoptosis is known to be induced by direct oxidative damage due to oxygen-free radicals or hydrogen peroxide or by their generation in cells by the actions of injurious agents. Together with glutathione peroxidase and catalase, peroxiredoxin (Prx) enzymes play an important role in eliminating peroxides generated during metabolism. We investigated the role of Prx enzymes during cellular response to oxidative stress. Using Prx isoforms-specific antibodies, we investigated the presence of Prx isoforms by immunoblot analysis in cell lysates of the MCF-7 breast cancer cell line. Treatment of MCF-7 with hydrogen peroxide (H2O2) resulted in the dose-dependent expressions of Prx I and II at the protein and mRNA levels. To investigate the physiologic relevance of the Prx I and II expressions induced by H2O2, we compared the survivals of MCF10A normal breast cell line and MCF-7 breast cancer cell line following exposure to H2O2. The treatment of MCF10A with H2O2 resulted in rapid cell death, whereas MCF-7 was resistant to H2O2. In addition, we found that Prx I and II transfection enabled MCF10A cells to resist H2O2-induced cell death. These findings suggest that Prx I and II have important functions as inhibitors of cell death during cellular response to oxidative stress.  相似文献   

5.
Because the detailed molecular mechanisms by which oxidative stress induces apoptosis are not completely known, we investigated how the complex Bcl-2 protein network might regulate oxidative stress-induced apoptosis. Using MEFs (mouse embryonic fibroblasts), we found that the endogenous anti-apoptotic Bcl-2 protein Bcl-xL prevented apoptosis initiated by H(2)O(2). The BH3 (Bcl-2 homology 3)-only Bcl-2 protein Noxa was required for H(2)O(2)-induced cell death and was the single BH3-only Bcl-2 protein whose pro-apoptotic activity was completely antagonized by endogenous Bcl-xL. Upon H(2)O(2) treatment, Noxa mRNA displayed the greatest increase among BH3-only Bcl-2 proteins. Expression levels of the anti-apoptotic Bcl-2 protein Mcl-1 (myeloid cell leukaemia sequence 1), the primary binding target of Noxa, were reduced in H(2)O(2)-treated cells in a Noxa-dependent manner, and Mcl-1 overexpression was able to prevent H(2)O(2)-induced cell death in Bcl-xL-deficient MEF cells. Importantly, reduction of the expression of both Mcl-1 and Bcl-xL caused spontaneous cell death. These studies reveal a signalling pathway in which H(2)O(2) activates Noxa, leading to a decrease in Mcl-1 and subsequent cell death in the absence of Bcl-xL expression. The results of the present study indicate that both anti- and pro-apoptotic Bcl-2 proteins co-operate to regulate oxidative stress-induced apoptosis.  相似文献   

6.
7.
UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H(2)O(2)) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H(2)O(2)-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H(2)O(2)-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.  相似文献   

8.
An inexorable loss of terminally differentiated heart muscle cells is a crucial causal factor for heart failure. Here, we have provided several lines of evidence to demonstrate that mitofusin-2 (Mfn-2; also called hyperplasia suppressor gene), a member of the mitofusin family, is a major determinant of oxidative stress-mediated cardiomyocyte apoptosis. First, oxidative stress with H(2)O(2) led to concurrent increases in Mfn-2 expression and apoptosis in cultured neonatal rat cardiomyocytes. Second, overexpression of Mfn-2 to a level similar to that induced by H(2)O(2) was sufficient to trigger myocyte apoptosis, which is associated with profound inhibition of Akt activation without altering ERK1/2 signaling. Third, Mfn-2 silencing inhibited oxidative stress-induced apoptosis in H9C2 cells, a cardiac muscle cell line. Furthermore, Mfn-2-induced myocyte apoptosis was abrogated by inhibition of caspase-9 (but not caspase-8) and by overexpression of Bcl-x(L) or enhanced activation of phosphatidylinositol 3-kinase-Akt, suggesting that inhibition of Akt signaling and activation of the mitochondrial death pathway are essentially involved in Mfn-2-induced heart muscle cell apoptosis. These results indicate that increased cardiac Mfn-2 expression is both necessary and sufficient for oxidative stress-induced heart muscle cell apoptosis, suggesting that Mfn-2 deregulation may be a crucial pathogenic element and a potential therapeutic target for heart failure.  相似文献   

9.
It is well established that the proto-oncogene, bcl-2, can prevent apoptosis induced by a variety of factors. Regarding the mechanism by which BCL-2 prevents cell death, one theory suggests that it acts by protecting cells from oxidative stress. In the lens system, oxidative stress-induced apoptosis is implicated in cataractogenesis. To explore the possibility of anti-apoptotic gene therapy development for cataract prevention and also to further test the anti-oxidative stress theory of BCL-2 action, we have introduced the human bcl-2 gene into an immortalized rabbit lens epithelial cell line, N/N1003A. The stable expression clones of both vector- and bcl-2-transfected cells have been established. Treatment of the two cell lines with H(2)O(2) revealed that bcl-2-transfected cells were less capable of detoxifying H(2)O(2) than the control cells. Moreover, bcl-2-transfected cells are more susceptible to H(2)O(2)-induced apoptosis. To explore why bcl-2-transfected cells have reduced resistance to H(2)O(2)-induced apoptosis, we examined the expression patterns of several relevant genes and found that expression of the alphaB-crystallin gene was distinctly down-regulated in bcl-2-transfected cells compared with that in vector-transfected cells. This down-regulation was specific because a substantial inhibition of BCL-2 expression through antisense bcl-2 RNA significantly restored the level of alphaB-crystallin and, moreover, enhanced the ability of the bcl-2-transfected cells against H(2)O(2)-induced apoptosis. Introduction of a mouse alphaB-crystallin gene into bcl-2-transfected cells also counteracted the BCL-2 effects. Down-regulation of alphaB-crystallin gene was largely derived from changed lens epithelial cell-derived growth factor activity. Besides, alphaB-crystallin prevents apoptosis through interaction with procaspase-3 and partially processed procaspase-3 to prevent caspase-3 activation. Together, our results reveal that BCL-2 can regulate gene expression in rabbit lens epithelial cells. Through down-regulation of the alphaB-crystallin gene, BCL-2 attenuates the ability of rabbit lens epithelial cells against H(2)O(2)-induced apoptosis.  相似文献   

10.
Reactive oxygen species (ROS) and oxidative stress have long been linked to cell death of neurons in many neurodegenerative conditions. However, the exact molecular mechanisms triggered by oxidative stress in neurodegeneration are at present unclear. In the current work we have used the human neuroblastoma SH-SY5Y cell line as a model for studying the molecular events occurring after inducing apoptosis with H2O2. We show that treatment of SH-SY5Y cells with H2O2 up-regulates survival pathways during early stages of apoptosis. Subsequently, the decline of anti-apoptotic protein levels leads to the activation of the calcium-dependent proteases calpains and the cysteine proteases caspases. Additionally, we demonstrate that CR-6 (3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran) acts as a scavenger of ROS and prevents apoptosis by enhancing and prolonging up-regulation of survival pathways. Furthermore, we show that pre-treatment of SH-SY5Y cells with a cocktail containing CR-6, the pan-caspase inhibitor zVAD-fmk (zVal-Ala-Asp-fluoro-methylketone) and the calpain inhibitor SJA6017 confers almost total protection against apoptosis. In summary, the present work characterizes the molecular mechanisms involved in oxidative stress-induced apoptosis in SH-SY5Y cells. Our findings highlight the relevance of CR-6, alone or in combination with other drugs, as potential therapeutic strategy for the treatment of neurodegenerative diseases.  相似文献   

11.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

12.
13.
Oxidative stress, resulting from accumulation of reactive oxygen species (ROS), plays a critical role on astrocyte death associated with neurodegenerative diseases. Astroglial cells produce endozepines, a family of biologically active peptides that have been implicated in cell protection. Thus, the purpose of the present study was to investigate the potential protective effect of one of the endozepines, the octadecaneuropeptide ODN, on hydrogen peroxide (H(2) O(2) )-induced oxidative stress and cell death in rat astrocytes. Incubation of cultured astrocytes with graded concentrations of H(2) O(2) for 1 h provoked a dose-dependent reduction of the number of living cells as evaluated by lactate dehydrogenase assay. The cytotoxic effect of H(2) O(2) was associated with morphological modifications that were characteristic of apoptotic cell death. H(2) O(2) -treated cells exhibited high level of ROS associated with a reduction of both superoxide dismutases (SOD) and catalase activities. Pre-treatment of astrocytes with low concentrations of ODN dose-dependently prevented cell death induced by H(2) O(2) . This effect was accompanied by a marked attenuation of ROS accumulation, reduction of mitochondrial membrane potential and activation of caspase 3 activity. ODN stimulated SOD and catalase activities in a concentration-dependent manner, and blocked H(2) O(2) -evoked inhibition of SOD and catalase activities. Blockers of SOD and catalase suppressed the effect of ODN on cell survival. Taken together, these data demonstrate for the first time that ODN is a potent protective agent that prevents oxidative stress-induced apoptotic cell death.  相似文献   

14.
The exact molecular mechanisms underlying the cellular effects associated with various flavonoids have yet to be fully explained. In the present study, we have administered several flavonoids to human HaCaT keratinocytes and determined that 3,4'-dihydroxy flavone (3,4'-DHF) exerts a slight stimulatory effect on cell growth, although other flavonoids, including kaempferol, quercetin, and isorhamnetin, exhibited growth inhibitory properties. 3,4'-DHF was found to exert an anti-apoptotic effect on etoposide-induced cell death of HaCaT keratinocytes. We were also able to determine that sustained ERK activation was intimately associated with the etoposide-induced apoptosis of HaCaT cells, and treatment with 3,4'-DHF induced a significant suppression of etoposide-induced ERK activation, concomitant with the repression of poly(ADP-ribose) polymerase or the cleavage of pro-caspase 3. ERK overexpression significantly overrode the anti-apoptotic function of 3,4'-DHF, but this was not true of ERK-DN. Moreover, treatment with 3,4'-DHF resulted in the protection of cells from H2O2-induced cell death and exerted an apparent suppressive effect on the stress-induced generation of reactive oxygen species (ROS). Finally, we showed that 3,4'-DHF almost completely abolished kaempferol-induced apoptosis, coupled with a concomitant suppression of both intracellular ROS generation and the activation of ERK. Taken together, our data clearly indicate that a host of phytochemicals, including etoposide and a variety of flavonoids, differentially regulate the apoptosis of human HaCaT keratinocytes via the differential modulation of intracellular ROS production, coupled with the concomitant activation of the ERK signaling pathway. According to these results, we are able to conclude the distinct structure-activity relationship between several flavonoids.  相似文献   

15.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

16.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

17.
The serine/threonine kinase Akt (also known as protein kinase B) is activated in response to various stimuli by a mechanism involving phosphoinositide 3-kinase (PI3-K). Akt provides a survival signal that protects cells from apoptosis induced by growth factor withdrawal, but its function in other forms of stress is less clear. Here we investigated the role of PI3-K/Akt during the cellular response to oxidant injury. H(2)O(2) treatment elevated Akt activity in multiple cell types in a time- (5-30 min) and dose (400 microM-2 mm)-dependent manner. Expression of a dominant negative mutant of p85 (regulatory component of PI3-K) and treatment with inhibitors of PI3-K (wortmannin and LY294002) prevented H(2)O(2)-induced Akt activation. Akt activation by H(2)O(2) also depended on epidermal growth factor receptor (EGFR) signaling; H(2)O(2) treatment led to EGFR phosphorylation, and inhibition of EGFR activation prevented Akt activation by H(2)O(2). As H(2)O(2) causes apoptosis of HeLa cells, we investigated whether alterations of PI3-K/Akt signaling would affect this response. Wortmannin and LY294002 treatment significantly enhanced H(2)O(2)-induced apoptosis, whereas expression of exogenous myristoylated Akt (an activated form) inhibited cell death. Constitutive expression of v-Akt likewise enhanced survival of H(2)O(2)-treated NIH3T3 cells. These results suggest that H(2)O(2) activates Akt via an EGFR/PI3-K-dependent pathway and that elevated Akt activity confers protection against oxidative stress-induced apoptosis.  相似文献   

18.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

19.
The mechanism whereby tumor necrosis factor (TNF) kills mammalian cells is not well understood, although oxidative damage has been suggested by several investigators. Further, it is not known why cells vary in their responsiveness to TNF. We show that the cytotoxic effect of TNF toward TNF-sensitive L929 cells is blocked under hypoxic conditions, suggesting a critical role of molecular oxygen and reactive oxygen species. To test whether cellular resistance to reactive oxygen species could provide resistance to TNF, we derived a variant strain from L929 cells by chronic exposure to an oxidizing agent, hydrogen peroxide (H2O2). These cells exhibit marked resistance to TNF as well as to H2O2. This cross-protection provides additional evidence that mechanisms of resistance to oxidative damage are causally related to TNF-induced cell death. Scatchard analysis of TNF binding did not reveal significant differences between the H2O2-resistant line and the wild-type L929 line. On the other hand, analyses of antioxidant enzymes and glutathione levels in cells of the wild-type and the H2O2-resistant lines revealed several potentially important differences. Before exposure to TNF, the H2O2-resistant variants have elevated catalase activity, decreased activity of total glutathione-S-transferase (GST), and similar superoxide dismutase (SOD) activities. Exposure to TNF led to alteration in CuZnSOD activity, and much more so in the variants than in the wild-type L929 cells. However, no significant change in MnSOD activities in cells of either cell line was observed. Total GST activity was not altered appreciably by TNF in either cell line, but Western analysis showed that the level of alpha GST isozyme was increased and mu GST isozyme decreased in the H2O2-resistant variants. Furthermore, alterations in total glutathione content were observed in both the control and the variant cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号