首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topsoil stockpiled for 4 years resulted in an accumulation of NH4-N at depths of 1m or more in mound, as measured by an ammonia gas-sensing electrode. When leached with water these soils were also found to contain high concentrations of dissolved organic C below 1m. Both NH4-N and DOC were products of microbial mineralisation of soil organic matter that accumulated under anaerobic conditions. When these soils were restored a flush of decomposition took place, fuelled by labile organic matter and soluble nitrogen.Stockpiled soil which underwent an ammonium-rich perfusion regime in the laboratory indicated that in-mound soils rapidly attained greater nitrification potential than surface mound soils and also had greater potential for further mineralisation of organic matter to NH4-N. This further production was seen as a contribution from the bacterial flush, stimulated by the large labile-C pool already present.As the bulk of stored soil was anaerobic, restored soils were seen as potentially wasteful of their N-reserves; the fate of nitrogen and soluble carbon compounds in restored soils is discussed.  相似文献   

2.
Restoring the diversity of plant species found in remnant communities is a challenge for restoration practitioners, in part because many reintroduced plant species fail to establish in restored sites. Legumes establish particularly poorly, perhaps because they depend on two guilds of soil microbial mutualists, rhizobial bacteria and arbuscular mycorrhizal (AM) fungi, that may be absent from restored sites. We tested the effect of soil microorganisms from remnant and restored prairies on legume growth by inoculating seedlings of Lespedeza capitata, Amorpha canescens, and Dalea purpurea with soil from 10 restored prairies and 6 remnant (untilled) prairies from southwest Michigan. We generally found support for the hypothesis that restored prairie soils lack microbes that enhance prairie plant growth, although there was variation across species and mutualist guilds. All three legumes grew larger and two legumes (Lespedeza and Amorpha) produced more nodules when inoculated with soil from remnant prairies, suggesting that low quantity and/or quality of rhizobial partners may limit the establishment of those species in restored prairies. In contrast, no legume experienced greater root colonization by AM fungi in remnant prairie soils, suggesting equivalent quantity (but not necessarily quality) of fungal partners in remnant and restored prairie soils. We detected no evidence of spontaneous recovery of the community of beneficial soil microbes in restorations. These results suggest that the absence of rhizobia, a largely overlooked component of prairie soils, could play a strong role in limiting restored prairie diversity by hindering legume establishment. Active reintroduction of appropriate rhizobial strains could enhance prairie restoration outcomes.  相似文献   

3.
Nitrification in some tropical soils   总被引:19,自引:0,他引:19  
Summary Nitrification of soil N in 8 mineral and 2 histosols having a wide range in pH (3.4 to 8.6), organic C (1.22 to 22.70%) and total N (0.09 to 1.20%) was studied by measuring nitrate fromation under aerobic incubation of the soil samples at 30°C for 4 weeks. The amounts of NO3-N produced in the soils varied from 0 to 123 μg/g of soil. Soil N in the two acid sulfate soils and one other acid soil did not nitrify under conditions that stimulate nitrification. Soils having pH more than 6.0 nitrified at a rapid rate and released NO3-N ranging from 98 to 123 μg/g. The two organic soils differed considerably in their capacity to nitrify though the total amounts of mineral N released were similar in these soils. The amounts of NO3-N formed in the soils was highly positively correlated with the soil pH but was not significantly correlated with the organic C of total N content of the soils. Statistical analysis also showed that nitrate formation was not significantly correlated with soil pH in soils having pH higher than 6.0.  相似文献   

4.
Bioremediation of glyphosate-contaminated soils   总被引:1,自引:0,他引:1  
Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B-2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1–2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils.  相似文献   

5.
用土柱试验,研究了栽培樱桃番茄(Lycopersicon esculentum var.cerasiforme Alef.)的塿土和黄绵土水分运移和温度变化规律,水分运移模型选用土壤中水分分布的动力学模型,土壤温度、空气温湿度变化选用正弦曲线模型。结果表明:塿土在各个不同深度的平均含水量均高于黄绵土,塿土的入渗速率高于黄绵土,同一深度塿土温度高于黄绵土,土壤温度随着深度的增加具有明显的滞后性;黄绵土中樱桃番茄的水分利用效率大于塿土,空气温湿度、土壤温度和土壤含水量相互影响。水分运移模型在土壤浅层处可以得到很好的拟合效果,在拟合方程的变量范围内,根据时间可以较准确的确定樱桃番茄盛果期土壤浅层含水量,对于进一步提高农业干旱防御能力、有效制定节水灌溉计划、提高水分利用效率提供了理论依据。  相似文献   

6.
红树林恢复对海岸湿地土壤影响的初步研究   总被引:4,自引:1,他引:4  
初步研究了不同林龄的再植红树林对海岸湿地土壤理化性质的影响。结果表明,红树林恢复对深层土壤(20~25cm)的影响强于表层(0~5cm);与光滩相比,红树林恢复对表层土壤的氧化还原性无显著影响,但导致20~25cm土层氧化性增强;再植红树林对土壤营养盐有明显吸收作用,其中NH4+-N含量显著高于NO2--N和NO3--N,为主要吸收营养盐,PO43--P含量虽与IN相当,但红树林对P的吸收并不明显;随着红树林恢复时间的延长(林龄增加),20-25cm土层的pH值显著下降,红树林酸化作用增强;各样地表层土壤SO42-含量无显著差别,但恢复林地深层土壤明显高于光滩。  相似文献   

7.
1. Cellulose decomposition in forest and orchard soils was investigated by studying the breakdown of boiled and washed cellophane in the soils and in vitro. Decomposition occurred from quick to slow in the order: orchard on clay soil, forest on clay soil, forest on sandy loam, and in the latter in the order: calcareous mull, acid mull and mor. 2. In the different forest soils which were investigated the rate of decomposition was parallel to their water capacity. It slowed down considerably when the water content of the soil decreased, especially after the wilting point was reached. 3. Of the fungi isolated from these soils, those from orchard soil — 5% to 50%Fusarium spp. — were among the fastest decomposers of cellulose. This agrees with, and may explain the high rate of decomposition in orchard soil. 4. Decomposition in pure culture is quicker than in soil. As filtersterilized soil extract checked the decomposition in pure culture, but heat-sterilized soil extract did not, an extractable but heat-sensitive substance may be one retarding factor.  相似文献   

8.
Summary The availability to oats of adsorbed sulphate in soils and of sulphate impurity in calcium carbonate was studied in pot-culture experiments.When calcium carbonate was added to soils with pH values ranging from 5.7 to 7.4 the uptake of sulphur by oats was increased, due probably to enhanced mineralization of soil organic sulphur. When the calcium carbonate contained sulphate impurity the uptake of sulphur was further increased by an amount comparable with the release of sulphate which could be expected from a reaction of the calcium carbonate with the exchangeable hydrogen of the soil. Sulphate in excess of this amount appeared to be largely unavailable. Uptake of sulphur by oats from calcareous sands containing large amounts of insoluble sulphate associated with calcium carbonate also suggested that soil sulphur in this form had very low availability to plants.Substantial increases in the amounts of sulphur extracted by reagents commonly used for the determination of adsorbed sulphate in soils occurred when soils were airdried at about 20°C. Decreases in adsorbed sulphate in soils following the growth of oats in pot culture confirmed that adsorbed sulphate is readily available to plants.  相似文献   

9.
Enantioselective degradation of warfarin in soils   总被引:1,自引:0,他引:1  
Lao W  Gan J 《Chirality》2012,24(1):54-59
  相似文献   

10.
Adaptation to nickel of bacterial communities of two extreme neocaledonian soils (an ultramafic soil and an acidic soil) was investigated by nickel spiking and compared with adaptation in a non-neocaledonian soil used as reference. Soil microcosms were amended with nickel chloride (NiCl2), and bacterial community structure was analysed with the ribosomal intergenic spacer analysis (RISA) technique. Then, bacterial populations that respond to nickel stress were identified by cloning and sequencing. In the ultramafic soil, a shift occurred on day zero on the assay profiles and consisted of the emergence of a bacterial group closely related to the Ralstonia/Oxalobacter/Burkholderia group. It is hypothesized that NiCl2 had a physico-chemical impact on soil structure. Fourteen days after nickel spiking, another shift occurred in the two soils that concerned a bacterial group belonging to the Actinomycete group. Only a few changes occurred in the bacterial community structure of the neocaledonian soils compared with those of the reference soil, which is more affected by nickel spiking. These results suggest that neocaledonian soil bacteria are particularly well adapted to nickel.  相似文献   

11.
Intensive cropping of Italian ryegrass (Lolium multiforum L.) in pots was used to assess the contribution of non-exchangeable K to plant uptake. The soils used were: two soils high in mica (illite) developed on recent alluvium plus two smectitic (beidellitic) soils and a soil of mixed mineralogy rich in mica. Four K treatments were used (0, 28.6, 143, and 286 mg kg-1 soil) with 8 successive monthly cuttings. A response of plant K uptake to added K was observed in all soils. Both 1.0 M NH40Ac and 0.2 M CaCl2 extractable K were depleted to a minimum level specific for each soil. The minima were lower in the old upland soils compared to the young alluvial soils. Uptake of K by Italian ryegrass induced K release from the non-exchangeable K to replenish the plant available pool of K ions. The release of mica interlayer K in the alluvial and in the high K smectitic soil supplied sufficient K to plants even under intensive cropping. The rate of mobilization of interlayer K was low in the smectitic soil with lower K. The lowest release rate was in the old high mica soil. Iron coatings may have inhibited mobilization of interlayer K. The rates of mobilization cannot be predicted from mineralogical and K-extraction data only. The rates of K uptake and the rates of K release by ryegrass under intensive cropping are potential values which can be used for modelling K availability to plants in the soils studied.  相似文献   

12.
Abstract: The bacterial community response to pH was studied for 16 soils with pH(H2O) ranging between 4 and 8 by measuring thymidine incorporation into bacteria extracted from the soil into a solution using homogenization-centrifugation. The pH of the bacterial solution was altered to six different values with dilute sulfuric acid or different buffers before measuring incorporation. The resulting pH response curve for thymidine incorporation was used to compare bacterial communities from the different soils. There was a correlation between optimum pH for thymidine incorporation and the soil pH(H2O). Even bacterial communities from acid soils had optima corresponding to the soil pH, indicating that they were adapted to these conditions. Thymidine incorporation was also compared with leucine incorporation for some soils. The leucine to thymidine incorporation ratio was constant over the tested pH interval when incorporation values were adjusted for isotope dilution. A good correlation was found between the scores along the first component (explaining 80% of the variation) and soil pH ( r 2 = 0.85), if principal component analysis of the pH response curves for thymidine incorporation was used. The pH response curves differed most for the extreme pH values used, and a linear relationship was found between the logarithm of the ratio of thymidine incorporation at pH 4.3 to incorporation at pH 8.2 and the soil pH ( r 2 = 0.86). Thus, a simplified technique using only two pH values, when measuring the thymidine incorporation, could be used to compare the response to pH of bacterial communities.  相似文献   

13.
Soil respiration was proportional to its total carbon content. Maximum respiratory activity occurred in garden soil, followed in descending order by chernozem soil, brown soil, and sand. The oxidation of pipecolic acid, as studied by the Warburg manometric technique, in different rhizosphere soils from four crops 7, 13 and 20 days after planting as well as from one crop grown in different soils, was consistently in all cases faster than that by the corresponding non-rhizosphere soils. The curves of the rate of oxygen consumption during pipecolic acid oxidation, by garden soil (whether rhizosphere or non-rhizosphere soil) as well as by chernozem rhizosphere soil of different plants at the three stages of plant growth studied contained two peaks (two phases), whereas in non-rhizosphere chernozem soil as well as in brown soil and sand (whether affected or not affected by plant roots) only one peak was attained in the curves of the rate of oxygen uptake. The rapidity with which pipecolic acid was oxidized in the rhizosphere soil differed from plant to plant and at different phases of plant growth, and also with the type of soil used for plant growing. The extent of pipecolic acid oxidation after the first and second (if it occurred) phases did not differ in the different soils, both rhizosphere and non-rhizosphere soil, but the rate of oxygen uptake was higher in rhizosphere than in the corresponding non-rhizosphere soil. During the first phase, oxygen uptake accounted for slightly less than one-third of the total amount of oxygen required for complete oxidation of the added pipecolic acid. About two-thirds of that total amount were taken up during the both phases of oxidation.  相似文献   

14.
滨海盐土是重要的农业土地后备资源。微生物是土壤中物质循环的关键动力,然而盐度对土壤微生物群落特征影响的研究还很缺乏。本研究采集滨海地区的土壤样品,研究非盐、轻盐和高盐3组不同盐度对土壤细菌数量、多样性和群落构建的影响。结果表明: 与非盐和轻盐土壤相比,高盐土壤的脱氢酶活性和细菌数量显著降低,而细菌α多样性没有变化,细菌群落结构发生分异。利用零模型反演群落构建过程,发现盐度是细菌群落构建过程的主控因子,盐度主导的高确定性过程控制了滨海盐土细菌的群落结构。说明在现有的盐度范围内,高盐土壤中同样含有丰富的微生物种质资源,具有盐土改良的生物学基础,然而由于高确定性的群落构建机制,外源物种很难定殖于滨海盐土。因此,在利用微生物技术改良滨海盐土时,应尽可能筛选耐盐的土著菌种,提高定殖效率。  相似文献   

15.
Tebuconazole is a fungicide used on onion crops (Allium Fistulosum L) in Colombia. Persistence of pesticides in soils is characterized by the half-life (DT50), which is influenced by their chemical structure, the physical and chemical properties of the soil and the previous soil history. Based on its structural and chemical properties, tebuconazole should be expected to be relatively persistent in soils. Laboratory incubation studies were conducted to evaluate persistence and bond residues of 14C tebuconazole in three soils, two inceptisol (I) and one histosol (H). Textural classifications were: loam (101), loamy sand (102) and loam (H03), respectively. Data obtained followed a first-order degradation kinetics (R2 > or = 0.899) with DT50 values between 158 and 198 days. The production of 14CO2 from the 14C-ring-labelled test chemicals was very low and increased slightly during 63 days in all cases. The methanol extractable 14C-residues were higher than aqueous ones and both decreased over incubation time for the three soils. The formation of bound 14C-residues increased with time and final values were 11.3; 5.55 and 7.87% for 101, 102 and H03 respectively. Soil 101 showed the lowest mineralization rate and the highest bound residues formation, which might be explained by the clay fraction content. In contrast, an inverse behavior was found for soils 102 and H03, these results might be explained by the higher soil organic carbon content.  相似文献   

16.
A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50 mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 °C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.  相似文献   

17.
Sawatsky  N.  Li  X. 《Plant and Soil》1997,192(2):227-236
This study was conducted to investigate water movement in hydrocarbon contaminated soils. Three soils were studied, a hydrocarbon contaminated soil, the same soil after 3 years of bioremediation, and a control soil from the same site. There was a critical soil water content around 18% (bioremediated soil) and 20% (contaminated soil), above which the sorptivity of the contaminated soil was near that of the control soil. For soils with water contents below this value, there was a strong divergence in sorptivity between contaminated and control or bioremediated soils. Results suggest that water availability in contaminated soils will be highly dependent on soil water properties as water potential approaches the permanent wilting point (-1.5 MPa matrix potential).Infiltration of water into air dry (2% m.c. w/w) hydrocarbon contaminated soils was up to three orders of magnitude slower than for the control soil. For air dried soils, the infiltration rate of the contaminated and bioremediated soils was constant with time. This was in contrast to the control soil where infiltration rate was a function of the reciprocal of the square root of time.  相似文献   

18.
Compost has been widely used in order to promote vegetation growth in post-harvested and burned soils. The effects on soil microorganisms were scarcely known, so we performed the microbial analyses in a wildfire area of the Taebaek Mountains, Korea, during field surveys from May to September 2007. Using culture-dependent and -independent methods, we found that compost used in burned soils influenced a greater impact on soil fungi than bacteria. Compost-treated soils contained higher levels of antifungal strains in the genera Bacillus and Burkholderia than non-treated soils. When the antifungal activity of Burkholderia sp. strain O1a_RA002, which had been isolated from a compost-treated soil, was tested for the growth inhibition of bacteria and fungi isolated from burned soils, the membrane-filtered culture supernatant inhibited 19/37 fungal strains including soil fungi, Eupenicillium spp. and Devriesia americana; plant pathogens, Polyschema larviformis and Massaria platani; an animal pathogen, Mortierella verticillata; and an unidentified Ascomycota. However, this organism only inhibited 11/151 bacterial strains tested. These patterns were compatible with the culture-independent DGGE results, suggesting that the compost used in burned soils had a greater impact on soil fungi than bacteria through the promotion of the growth of antifungal bacteria. Our findings indicate that compost used in burned soils is effective in restoring soil conditions to a state closer to those of nearby unburned forest soils at the early stage of secondary succession.  相似文献   

19.
This study investigated the resilience of bacterial diversity in soils restored after autoclaving, in terms of richness, evenness and community structure, and its feedback on the enantioselective transformation of racemic quizalofop‐ethyl (rac‐QE). Microbial biomass carbon (MBC) and bacterial richness (indexed by operational taxonomic units [OTUs]) in restored soil recovered to approximately 50% and 29%, respectively, of the native soil within 43 days. Bacterial evenness was much lower in restored soil than in native soil. The relative proportions of dominant bacterial genera differed significantly (P < .05) between restored and native soils. Importantly, two major bacterial genera that recolonized restored soil were not detected in native soil. Highly enantioselective transformation of rac‐QE was observed in restored soils, whereas QE enantiomers exhibited comparable transformation rates in native soils. The second‐round enantioselective transformation of rac‐QE was altered by the first‐round transformation of enantiopure quizalofop‐P‐ethyl (R‐P‐QE) in restored and native soils through selective effects of R‐P‐QE on the bacterial community. The transformation rate of rac‐QE was predominantly determined by bacterial abundance and richness, while the enantioselectivity was correlated more with bacterial structure.  相似文献   

20.
种植转Bt基因棉土壤中Bt蛋白的分布   总被引:2,自引:0,他引:2  
采用盆栽试验结合酶联免疫法(ELISA)测定了转Bt基因抗虫棉及常规棉花不同生育期根际及非根际土壤中的Bt蛋白含量.结果表明:红壤、黄棕壤及黄褐土种植转Bt基因棉花后根际土中Bt蛋白含量显著高于非根际土,而种植常规棉花的根际土与非根际土中Bt蛋白含量差异不显著.在初蕾期转Bt基因棉根际土中的Bt蛋白含量为黄褐土>黄棕壤>红壤,分别为常规棉根际土的144%、121%和238%;而在盛花期为黄棕壤>黄褐土>红壤,分别为常规棉根际土的156%、116%和197%.无论种植转Bt基因棉还是常规棉,供试土壤的根际和非根际土中Bt蛋白含量都随棉花生育期的推进先增加后减少,在盛花期达最大值.整个生育期内,转Bt基因棉根际土中的Bt蛋白含量大于其非根际土;种植转Bt基因棉土壤中Bt蛋白含量高于常规棉,说明转Bt基因棉花的Bt蛋白可释放到根际土中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号