首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The ability of Escherichia coli rapidly to degrade abnormal proteins is inhibited by mutations affecting any of several heat shock proteins (hsps). We therefore tested whether a short-lived mutant protein might become associated with hsps as part of its degradation. At 30 degrees C, the non-secreted mutant form of alkaline phosphatase, phoA61, is relatively stable, and very little phoA61 is found associated with the hsp dnaK. However, raising the temperature to 37 degrees C or 41 degrees C stimulated the degradation of this protein, and up to 30% of cellular phoA61 became associated with dnaK, as shown by immunoprecipitation and Western blot analysis. Also found in complexes with phoA61 were the hsps, protease La and grpE (but no groEL, or groES). The rapid degradation of phoA61 at 37 degrees C and 41 degrees C is in part by protease La, since it decreased by 50% in lon mutants. This process also requires dnaK, since deletion of this gene prevented phoA61 degradation almost completely (unless a wild-type dnaK gene was introduced). In contrast, the missense mutation, dnaK756, enhanced phoA61 degradation. The dnaK756 protein also was associated with phoA61, but this complex, unlike that containing wild-type dnaK could not be dissociated by ATP addition. Furthermore, in a grpE mutant, the degradation of phoA61 and the amount associated with dnaK increased, while in a dnaJ mutant, phoA61 degradation and its association with dnaK decreased. Thus, complex formation with dnaK appears essential for phoA61 degradation by protease La and some other cell proteases, and a failure of the dnaK to dissociate normally may accelerate proteolytic attack.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
A newly isolated dnaK mutant of Escherichia coli, which contains the mutation dnaK111, has been found to be conditionally defective in initiation of DNA replication. Mutant cells that were transferred to high temperature exhibited residual DNA synthesis before the synthesis stopped completely. Analysis of the DNA synthesized at high temperature by hybridization with probe DNAs for detection of DNA replicated in the origin (oriC) and terminal (terC) regions has revealed that this mutant is unable to initiate a new round of DNA replication at high temperature after termination of the round in progress. The cells exposed to high temperature were subsequently capable of initiating DNA replication at low temperature in a synchronous manner. DNA synthesis of this mutant became temperature resistant upon inactivation of the rnh gene, similar to that of dnaA mutants, although cell growth of the dnaK mutant with the inactive rnh gene remained temperature sensitive. The dnaK mutation prevented DNA synthesis of lambda bacteriophage at high temperature even in the absence of the rnh gene function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号