首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Genetic evidence indicates that Drosophila defense against Gram-positive bacteria is mediated by two putative pattern recognition receptors acting upstream of Toll, namely Gram-negative binding protein 1 (GNBP1) and peptidoglycan recognition protein SA (PGRP-SA). Until now however, the molecular recognition proceedings for sensing of Gram-positive pathogens were not known. In the present, we report the physical interaction between GNBP1 and PGRP-SA using recombinant proteins. GNBP1 was able to hydrolyze Gram-positive peptidoglycan (PG), while PGRP-SA bound highly purified PG fragments (muropeptides). Interaction between these proteins was enhanced in the presence of PG or muropeptides. PGRP-SA binding depended on the polymerization status of the muropeptides, pointing to constraints in the number of PGRP-SA molecules bound for signaling initiation. We propose a model whereby GNBP1 presents a processed form of PG for sensing by PGRP-SA and that a tripartite interaction between these proteins and PG is essential for downstream signaling.  相似文献   

2.
The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions via the selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist Gram-negative bacterial infection. Microbial recognition is achieved through peptidoglycan recognition proteins (PGRPs); Gram-positive bacteria activate the Toll pathway through a circulating PGRP (PGRP-SA), and Gram-negative bacteria activate the Imd pathway via PGRP-LC, a putative transmembrane receptor, and PGRP-LE. Gram-negative binding proteins (GNBPs) were originally identified in Bombyx mori for their capacity to bind various microbial compounds. Three GNBPs and two related proteins are encoded in the Drosophila genome, but their function is not known. Using inducible expression of GNBP1 double-stranded RNA, we now demonstrate that GNBP1 is required for Toll activation in response to Gram-positive bacterial infection; GNBP1 double-stranded RNA expression renders flies susceptible to Gram-positive bacterial infection and reduces the induction of the antifungal peptide encoding gene Drosomycin after infection by Gram-positive bacteria but not after fungal infection. This phenotype induced by GNBP1 inactivation is identical to a loss-of-function mutation in PGRP-SA, and our genetic studies suggest that GNBP1 acts upstream of the Toll ligand Sp?tzle. Altogether, our results demonstrate that the detection of Gram-positive bacteria in Drosophila requires two putative pattern recognition receptors, PGRP-SA and GNBP1.  相似文献   

3.
The Drosophila immune system discriminates between various types of infections and activates appropriate signal transduction pathways to combat the invading microorganisms. The Toll pathway is required for the host response against fungal and most Gram-positive bacterial infections. The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and GNBP1 that cooperate to detect the presence of infections in the host. Here, we report that GNBP3 is a pattern recognition receptor that is required for the detection of fungal cell wall components. Strikingly, we find that there is a second, parallel pathway acting jointly with GNBP3. The Drosophila Persephone protease activates the Toll pathway when proteolytically matured by the secreted fungal virulence factor PR1. Thus, the detection of fungal infections in Drosophila relies both on the recognition of invariant microbial patterns and on monitoring the effects of virulence factors on the host.  相似文献   

4.
The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-A resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG.  相似文献   

5.
The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-Å resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG.  相似文献   

6.
Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed.  相似文献   

7.
Unlike mammalian Toll-like Receptors, the Drosophila Toll receptor does not interact directly with microbial determinants but is rather activated upon binding a cleaved form of the cytokine-like molecule Spatzle (Spz). During the immune response, Spz is thought to be processed by secreted serine proteases (SPs) present in the hemolymph that are activated by the recognition of gram-positive bacteria or fungi . In the present study, we have used an in vivo RNAi strategy to inactivate 75 distinct Drosophila SP genes. We then screened this collection for SPs regulating the activation of the Toll pathway by gram-positive bacteria. Here, we report the identification of five novel SPs that function in an extracellular pathway linking the recognition proteins GNBP1 and PGRP-SA to Spz. Interestingly, four of these genes are also required for Toll activation by fungi, while one is specifically associated with signaling in response to gram-positive bacterial infections. These results demonstrate the existence of a common cascade of SPs upstream of Spz, integrating signals sent by various secreted recognition molecules via more specialized SPs.  相似文献   

8.
Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram-negative bacteria. Recent work has suggested that this differential activation is achieved through peptidoglycan recognition protein (PGRP)-mediated recognition of specific forms of peptidoglycan (PG). In this study, we have further analyzed the specific PG molecular requirements for Imd activation through the pattern recognition receptor PGRP-LC in both cultured cell line and in flies. We found that two signatures of Gram-negative PG, the presence of diaminopimelic acid in the peptide bridge and a 1,6-anhydro form of N-acetylmuramic acid in the glycan chain, allow discrimination between Gram-negative and Gram-positive bacteria. Our results also point to a role for PG oligomerization in Imd activation, and we demonstrate that elements of both the sugar backbone and the peptide bridge of PG are required for optimum recognition. Altogether, these results indicate multiple requirements for efficient PG-mediated activation of the Imd pathway and demonstrate that PG is a complex immune elicitor.  相似文献   

9.
Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.  相似文献   

10.
11.
In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-l-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects.  相似文献   

12.
Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression. rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop, whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors.  相似文献   

13.
Gram-negative binding protein 3 (GNBP3), a pattern recognition receptor that circulates in the hemolymph of Drosophila, is responsible for sensing fungal infection and triggering Toll pathway activation. Here, we report that GNBP3 N-terminal domain binds to fungi upon identifying long chains of β-1,3-glucans in the fungal cell wall as a major ligand. Interestingly, this domain fails to interact strongly with short oligosaccharides. The crystal structure of GNBP3-Nter reveals an immunoglobulin-like fold in which the glucan binding site is masked by a loop that is highly conserved among glucan-binding proteins identified in several insect orders. Structure-based mutagenesis experiments reveal an essential role for this occluding loop in discriminating between short and long polysaccharides. The displacement of the occluding loop is necessary for binding and could explain the specificity of the interaction with long chain structured polysaccharides. This represents a novel mechanism for β-glucan recognition.The activation of the immune response is energetically costly and may be detrimental to the host, especially when inappropriately triggered. Therefore, the reliable detection of infections is a step of paramount importance in the immune response. To achieve the task of detecting potentially hazardous microorganisms, the innate immune system relies on several strategies. One of them is to sense both pathogenic and nonpathogenic microorganisms thanks to pattern recognition receptors (PRRs)4 that recognize intrinsic microbial molecular “signatures” (1). These immune receptors have been selected during evolution for their ability to bind to essential, conserved, structural components of the microorganisms such as flagellins, peptidoglycans of bacteria, lipopolysaccharides of Gram-negative bacteria, lipoteichoic acids of Gram-positive bacteria, and β-glucans of the fungal cell wall (2, 3). Examples of mammalian PRRs include Toll-like receptors (4), intracellular receptors of the NOD family (5), peptidoglycan recognition proteins (PGRPs) (6), and the membrane-bound Dectin-1 receptor, which detects fungal β-glucans (7).One important arm of the innate immunity in Drosophila is a potent systemic response that relies on the synthesis in the fat body (a functional equivalent of the mammalian liver) of potent antimicrobial peptides (AMPs) that are secreted in the hemolymph where they attack invading microorganisms. Genetic analysis has delineated two major regulatory pathways of NF-κB type that control the expression of AMP genes (8). The immune deficiency (imd) pathway is mostly required in the host defense against Gram-negative bacteria (9) and is triggered by PRRs of the PGRP family, namely PGRP-LC (10) and PGRP-LE (11). The Toll pathway is essential for fighting fungal and some Gram-positive bacterial infections (12, 13). Toll, the funding member of the Toll-like receptor family, is not itself a PRR. Rather, it is activated by a ligand of the nerve growth factor family, the Spätzle cytokine. To bind to the Toll receptor, Pro-Spätzle needs to be proteolytically processed by a protease, the Spätzle-processing enzyme (SPE) (14), which is itself activated by upstream proteolytic cascades. One such cascade is activated in response to a Gram-positive bacterial challenge by a complex of PGRP-SA, PGRP-SD, and Gram-negative binding protein 1 (GNBP1) (13, 15, 16). Flies deficient for either PGRP-SA or GNBP1 are deficient in Toll pathway activation and are susceptible to infections by several Gram-positive bacterial species but not to fungal infections. In contrast, flies mutant for GNBP3, another gene encoding a GNBP family member, fail to activate the Toll pathway in response to killed fungi and succumb rapidly to fungal but not bacterial infections (17). GNBP3 is thought to activate a proteolytic cascade, which partially overlaps that triggered by the GNBP1·PGRP-SA complex (18). Even though they belong to the same family and activate the same pathway, GNBP1 and GNBP3 are required for sensing distinct classes of microorganisms.The founding member of the GNBP family, a 50-kDa protein found in hemolymph of Bombyx mori and originally named p50, was characterized as a gram-negative (Escherichia coli) binding protein (19); hence, its name. However, it has become clear that GNBPs belong to the family of β-glucan recognition proteins (βGRP) that had first been purified on their ability to trigger the prophenol oxidase cascade (a wound response that leads to melanization at the injury site) in response to fungal infections (20). Members of the GNBP/βGRP family are extracellular proteins composed of a small N-terminal domain of about 100 residues and a longer C-terminal domain of about 350 residues (21, 22). In the insect Plodia interpunctella, both domains of βGRP bind to laminarin, a soluble β-1,3-glucan with a high affinity (KA in the 108 m−1 range) (23) which is in the same range as that of the Factor G of the Japanese horseshoe crab (24). The latter factor is used as a diagnostic reagent for the detection of glucans. The C-terminal domain displays sequence similarity to bacterial glucanases, yet the catalytic residues have not been conserved, suggesting that this domain has been selected during evolution for its ability to bind to glucans (21, 22). The N-terminal domain defines a novel β-1,3-glucan binding domain that binds to curdlan, an insoluble linear β-1,3-glucan polymer, a property that the C-terminal glucanase-like domain lacks (21). Full-length recombinant GNBP/βGRPs have been reported to bind to bacteria, lipopolysaccharides, or lipoteichoic acids (19, 22, 23, 25). Although the domain(s) that mediates these interactions has not been thoroughly mapped, it appears that the N-terminal P. interpunctella β-1,3-glucan domain is not required for binding to these bacterial compounds (23).Numerous three-dimensional structures of PGRPs, in some cases complexed with their ligands, have been reported (2629). In contrast, this knowledge is currently lacking as regarding GNBPs. As a first step toward elucidating the structure/function relationships of GNBPs, we report here that a recombinant polypeptide encoding the N-terminal domain of GNBP3 binds to fungi and to long β-1,3-glucan chains but not to short laminarioligosaccharides. The determination of the crystal structure of GNBP3 N-terminal domain reveals an immunoglobulin fold in which the β-glucan binding site is masked by a lid, which is likely to be displaced by long polysaccharide chains.  相似文献   

14.
The current model of immune activation in Drosophila melanogaster suggests that fungi and Gram-positive (G(+)) bacteria activate the Toll/Dif pathway and that Gram-negative (G(-)) bacteria activate the Imd/Relish pathway. To test this model, we examined the response of Relish and Dif (Dorsal-related immunity factor) mutants to challenge by various fungi and G(+) and G(-) bacteria. In Relish mutants, the Cecropin A gene was induced by the G(+) bacteria Micrococcus luteus and Staphylococcus aureus, but not by other G(+) or G(-) bacteria. This Relish-independent Cecropin A induction was blocked in Dif/Relish double mutant flies. Induction of the Cecropin A1 gene by M. luteus required Relish, whereas induction of the Cecropin A2 gene required Dif. Intact peptidoglycan (PG) was necessary for this differential induction of Cecropin A. PG extracted from M. luteus induced Cecropin A in Relish mutants, whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting that the Drosophila immune system can distinguish PGs from various G(+) bacteria. Various fungi stimulated antimicrobial peptides through at least two different pathways requiring Relish and/or Dif. Induction of Attacin A by Geotrichum candidum required Relish, whereas activation by Beauvaria bassiana required Dif, suggesting that the Drosophila immune system can distinguish between at least these two fungi. We conclude that the Drosophila immune system is more complex than the current model. We propose a new model to account for this immune system complexity, incorporating distinct pattern recognition receptors of the Drosophila immune system, which can distinguish between various fungi and G(+) bacteria, thereby leading to selective induction of antimicrobial peptides via differential activation of Relish and Dif.  相似文献   

15.
Mammalian peptidoglycan recognition proteins (PGRPs), similar to antimicrobial lectins, bind the bacterial cell wall and kill bacteria through an unknown mechanism. We show that PGRPs enter the Gram-positive cell wall at the site of daughter cell separation during cell division. In Bacillus subtilis, PGRPs activate the CssR-CssS two-component system that detects and disposes of misfolded proteins that are usually exported out of bacterial cells. This activation results in membrane depolarization, cessation of intracellular peptidoglycan, protein, RNA and DNA synthesis, and production of hydroxyl radicals, which are responsible for bacterial death. PGRPs also bind the outer membrane of Escherichia coli and activate the functionally homologous CpxA-CpxR two-component system, which kills the bacteria. We exclude other potential bactericidal mechanisms, including inhibition of extracellular peptidoglycan synthesis, hydrolysis of peptidoglycan and membrane permeabilization. Thus, we reveal a previously unknown mechanism by which innate immunity proteins that bind the cell wall or outer membrane exploit the bacterial stress defense response to kill bacteria.  相似文献   

16.
17.
Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall and messengers in diverse cell signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the relationship of structure to the biochemical events that the muropeptides elicit. Muropeptide sensing and recycling in both Gram-positive and Gram-negative bacteria are discussed, followed by muropeptide sensing by eukaryotes as a crucial event in the innate immune response of insects (via peptidoglycan-recognition proteins) and mammals (through Nod-like receptors) to bacterial invasion.  相似文献   

18.
The covalent anchoring of surface proteins to the cell wall envelope of Gram-positive bacteria occurs by a universal mechanism requiring sortases, extracellular transpeptidases that are positioned in the plasma membrane. Surface protein precursors are first initiated into the secretory pathway of Gram-positive bacteria via N-terminal signal peptides. C-terminal sorting signals of surface proteins, bearing an LPXTG motif or other recognition sequences, provide for sortase-mediated cleavage and acyl enzyme formation, a thioester linkage between the active site cysteine residue of sortase and the C-terminal carboxyl group of cleaved surface proteins. During cell wall anchoring, sortase acyl enzymes are resolved by the nucleophilic attack of peptidoglycan substrates, resulting in amide bond formation between the C-terminal end of surface proteins and peptidoglycan cross-bridges within the bacterial cell wall envelope. The genomes of Gram-positive bacteria encode multiple sortase genes. Recent evidence suggests that sortase enzymes catalyze protein anchoring reactions of multiple different substrate classes with different sorting signal motif sequences, protein linkage to unique cell wall anchor structures as well as protein polymerization leading to the formation of pili on the surface of Gram-positive bacteria.  相似文献   

19.
In Drosophila, the response against various microorganisms involves different recognition and signaling pathways, as well as distinct antimicrobial effectors. On the one hand, the immune deficiency pathway regulates the expression of antimicrobial peptides that are active against Gram-negative bacteria. On the other hand, the Toll pathway is involved in the defense against filamentous fungi and controls the expression of antifungal peptide genes. The gene coding for the only known peptide with high activity against Gram-positive bacteria, Defensin, is regulated by both pathways. So far, survival experiments to Gram-positive bacteria have been performed with Micrococcus luteus and have failed to reveal the involvement of one or the other pathway in host defense against such infections. In this study, we report that the Toll pathway, but not that of immune deficiency, is required for resistance to other Gram-positive bacteria and that this response does not involve Defensin.  相似文献   

20.
Intestinal epithelial cells (IEC) interact with a high density of Gram-positive bacteria and are active participants in mucosal immune responses. Recognition of Gram-positive organisms by Toll-like receptor (TLR)2 induces proinflammatory gene expression by diverse cells. We hypothesized that IEC are unresponsive to Gram-positive pathogen-associated molecular patterns and sought to characterize the functional responses of IEC to TLR2-specific ligands. Human colonic epithelial cells isolated by laser capture microscopy and IEC lines (Caco-2, T84, HT-29) were analyzed for expression of TLR2, TLR6, TLR1, and Toll inhibitory protein (Tollip) mRNA by RT-PCR and quantitative real-time PCR. Response to Gram-positive bacterial ligands was measured by NF-kappa B reporter gene activation and IL-8 secretion. TLR2 protein expression was analyzed by immunofluorescence and flow cytometry. Colonic epithelial cells and lamina propria cells from both uninflamed and inflamed tissue demonstrate low expression of TLR2 mRNA compared with THP-1 monocytes. IECs were unresponsive to TLR2 ligands including the staphylococcal-derived Ags phenol soluble modulin, peptidoglycan, and lipotechoic acid and the mycobacterial-derived Ag soluble tuberculosis factor. Transgenic expression of TLR2 and TLR6 restored responsiveness to phenol soluble modulin and peptidoglycan in IEC. In addition to low levels of TLR2 protein expression, IEC also express high levels of the inhibitory molecule Tollip. We conclude that IEC are broadly unresponsive to TLR2 ligands secondary to deficient expression of TLR2 and TLR6. The relative absence of TLR2 protein expression by IEC and high level of Tollip expression may be important in preventing chronic proinflammatory cytokine secretion in response to commensal Gram-positive bacteria in the gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号