首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vivo and in vitro synthesis of adenovirus type 2 early proteins.   总被引:13,自引:11,他引:2       下载免费PDF全文
The synthesis of adenovirus type 2 (Ad2)-induced early polypeptides was examined in vivo and in vitro by a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis alone and specific immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of total [35S]methionine-labeled polypeptides synthesized in vivo at 3 h postinfection allowed us to detect in infected cells at lease 13 distinct polypeptides that are either absent or less conspicuous in extracts from mock-infected cells. These Ad2-induced early polypeptides have molecular weights ranging from 72 x 10(3) to 10.5 x 10(3) and have accordingly been designated as E72K to E10.5K. Nine of the in vivo synthesized early polypeptides can be precipitated specifically from infected cell extracts by antisera with specificity against early adenovirus proteins. In vitro translation of mRNA extracted from mock-infected cells and from Ad2-infected cells was carried out in preincubated Ehrlich ascites cell extracts. All the early Ad2-induced polypeptides identified in the extracts from infected cells labeled in vivo were also detected among the polypeptides immunoprecipitated specifically from the in vitro reaction mixtures programmed by RNA extracted at 4 h postinfection from Ad2-infected cells.  相似文献   

2.
A soluble Ad2 DNA synthesizing complex was prepared from Ad2-infected KB cell nuclei and purified by exclusion chromatography on a BioGel A-50m column. The purified complex was able to synthesize DNA from all regions of the virus genome, as indicated by EcoRI restriction endonuclease analysis of in vitro labeled DNA. Experiments were performed to identify Ad2-induced early polypeptides present in the complex. Ad2-infected and mock-infected cells were labeled with [35S]methionine 7–10 h postinfection, then incubated for 8 h to allow the 35S-labeled early polypeptides to become associated with the complex. The polypeptides in the purified complex and each of the cell fractions were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The major components of the purified complex were the 73K DNA binding phosphoprotein and 11K, two adenovirus 2-induced early polypeptides. The 11K has a preferred nuclear location. Small quantities of other Ad2-induced early proteins, 21K, 15K, and possibly 8.3K were also associated with the complex.  相似文献   

3.
The early and late gene products of human adenovirus type 12 (Ad12), as well as the viral proteins synthesized in an Ad12-transformed cell line, were identified by translation of viral mRNA in an in vitro protein-synthesizing system. Cytoplasmic RNA was isolated from permissive KB or nonpermissive BHK cells infected with Ad12 and from Ad12-transformed HA12/7 cells. Virus-specific RNA was selected by hybridization to Ad12 DNA covalently bound to cellulose. Viral RNA was then translated in a fractionated rabbit reticulocyte cell-free system or in wheat germ S-30 extracts. The proteins synthesized were characterized by immunoprecipitation and subsequent electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. RNA prepared from KB cells late after infection with Ad12 elicited the synthesis of most of the structural polypeptides of the virion and at least two presumably nonstructural Ad12 proteins. When viral RNA isolated early after infection of KB cells with Ad12 was translated in vitro, 10 polypeptides were observed: E-68K, E-50K, E-42K, E-39K, E-34K, E-21K, E-19K, E-13K, E-12K, and E-10K. Ad12-specific RNA was also isolated from the Ad12-transformed hamster cell line HA12/7, which contains several copies of the Ad12 genome integrated in the host genome. The RNA codes for at least seven polypeptides with molecular weights very similar to those of the early viral proteins.  相似文献   

4.
We have identified an adenovirus type 2 (Ad2)-induced early glycopolypeptide with an apparent molecular weight of 20,000 to 21,000 (20/21K), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 20/21K polypeptide could be labeled in vivo with [(3)H]glucosamine. [(35)S]methionine- and [(3)H]-glucosamine-labeled 20/21K polypeptides bound to concanavalin A-Sepharose columns and were eluted with 0.2 M methyl-alpha-d-mannoside. The pulse-labeled polypeptide appeared as a sharp band with an apparent molecular weight of 21K, but after a chase it converted to multiple bands with an average molecular weight of 20K. This variability in electrophoretic mobility is consistent with glycosylation or deglycosylation of the 20/21K polypeptide. Analysis of the pulse and pulse-chase-labeled forms by using partial proteolysis indicated that the polypeptides were highly related chemically, but not identical. Most of the 20/21K polypeptide is localized in the cytoplasm fraction of infected cells lysed by Nonidet P-40. The 20/21K polypeptide and a 44K polypeptide, labeled with [(35)S]methionine or [(3)H]glucosamine in Ad2-infected human cells, were precipitated by a rat antiserum against an Ad2-transformed rat cell line (T2C4), but not by antisera against three other Ad2-transformed rat cell lines, or by serum from nonimmune rats. The partial proteolysis patterns of the 20/21K and the 44K polypeptides were indistinguishable, indicating that the two polypeptides are highly related, and suggesting that the 44K polypeptide might be a dimer of the 20/21K polypeptide. The 20/21K polypeptide was also induced in Ad2-early infected monkey and hamster cells. These results imply that the 20/21K polypeptide is synthesized in Ad2-infected human, monkey, and hamster cells, and in one but not all Ad2-transformed rat cells. Thus, the 20/21K polypeptide is probably viral coded rather than cell coded and viral induced.  相似文献   

5.
We have identified adenovirus type 2 (Ad2)-induced early polypeptides (EPs) and have attempted to determine which EPs are coded by each of the four early gene blocks. [35S]methionine-labeled EPs were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cycloheximide pretreatment followed by labeling in hypertonic medium (210 to 250 mM NaCl) facilitated the detection of EPs. Seven major (reproducible bands in autoradiograms) EPs were detected with molecular weights of 74,000 (74K), 21K, 19K, 15K, 13.5K, 11.5K, and 11K. Minor (weaker bands) EPs of 55K, 52K, 42K, 18K, 12K, 8.8K, and 8.3K were also often seen. To identify and map the genes for virus-coded EPs, we prepared antisera against five lines of adenovirus-transformed cells that retain different fractions of the viral genome. The lines were F17, 8617, F4, and T2C4 transformed by Ad2 virions and 5RK (clone I) transformed by transfection with the Ad5 HsuI-G fragment (map position 0 to 8). The early gene blocks retained and expressed (in part) as RNA in these cells were as follows: 5RK(I), block 1 (70% of left 8% of genome); F17, block 1; 8617, blocks 1 and 4; F4 blocks 1, 2, and 4; T2C4, blocks 1, 2, 3, and 4. The following major EPs were immunoprecipitated: 15K by all antisera; 53K and 14.5K by F17, T2C4, 8617, and F4 antisera; 11.5K by T2C4, 8617, and F4 antisera; 44K, 42K, 19K, and 13.5K by T2C4 antisera; 11K by 8617 antisera. Minor EPs of 28K, 18K, and 12K were precipitated by all antisera except 5RK(I). The 53K and 15K EPs were precipitated also from Ad2 early infected monkey cells by the F17 antiserum and by sera from hamsters bearing tumors induced by Ad1-simian virus 40. The relationships between some of the immunoprecipitated EPs were investigated by the partial proteolysis procedure. All 53K EPs are the "same" (i.e., highly related), all 15K EPs are the "same," and all 11.5K EPs are the "same." The 15K EP is highly related to the 14.5 K EP. Although less certain, all 28K EPs appeared related, as did all 18K EPs. The T2C4-specific 44K EP is probably a dimer of the 21K glycopolypeptide. The T2C4-specific 13.5K EP and the 8617-specific 11K EP appear unrelated to any other polypeptides. These immunoprecipitation data provide evidence that early gene block I (map position 1 to 11) may encode major 53K, 15K, and 14.5K polypeptides, and minor 28K, 18K, and 12K polypeptides, and that all or some of the gene for 15K and 14.5K lies within map position 1 to 8. The surprisingly complex pattern of polypeptides coded by early gene block I raises the possibility that some polypeptides may be coded by overlapping "spliced" mRNA's. The possible block locations of the genes for the 21K, 13.5K, and 11.5K polypeptides are discussed.  相似文献   

6.
Viral gene products in adenovirus type-2 transformed hamster cells.   总被引:8,自引:2,他引:6       下载免费PDF全文
H Esche 《Journal of virology》1982,41(3):1076-1082
I have analyzed viral gene products expressed in five adenovirus type 2 (Ad2)- cytoplasmic, viral RNA which was selected by hybridization to cloned restriction endonuclease fragments of Ad2 DNA. Proteins synthesized in vitro were analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels and compared with those directed by RNAs prepared from productively infected cells. The early regions E1 and E4 of adenovirus type 2 (Ad2) were found to be expressed in all of five Ad2-transformed hamster embryo cells lines. RNA transcribed from early region E2, which codes for the 72,000-molecular-weight (72K) DNA-binding protein was detected in cell line HE1 only, and early region E3 was expressed exclusively in cell line HE4. RNA transcribed from the region between approximately 12 and 35 map units, coding for immediate early (13.5K, 52/53K) and immediate early proteins (13.6K, 16K, 17K, 87K), as well as RNA from late genes, was not found in any of the cell lines HE1 to HE5 had electrophoretic mobilities similar to those programmed by RNA from productively infected cells.  相似文献   

7.
The mRNA species encoded by early region 4 (E4) (map position [mp] 91.5 to 99.3) of adenovirus 2 were isolated from the polysomes of infected KB cells and were purified by hybridization to the cloned HindIII-F fragment (mp 89.5 to 97.3) or to EcoRI-C fragment (mp 89.7 to 100). The mRNA's were translated in vitro using [35S]methionine as a labeled precursor in rabbit reticulocyte lysates treated with micrococcal nuclease as well as in wheat germ lysates. Five major (35,000-molecular-weight [35K], 23K, 22K, 21K, 18K) polypeptides were observed when the reticulocyte lysate was used. The 23K, 22K, 21K, and 18K polypeptides were also observed with the wheat germ lysate, as well as a very prominent 11K polypeptide; the 35K polypeptide was not observed. Assignment of these polypeptides to E4 was further established by hybrid arrested translation. Two-dimensional gel electrophoresis of a wheat germ translate resolved five polypeptides ranging from 18K to 23K, the major 11K polypeptide, and polypeptides of 10K and 9K. The in vitro 23K to 18K and 11K polypeptides migrated to approximately the same positions on two-dimensional gels as did seven 26K to 21K polypeptides and an 11K polypeptide synthesized in vivo (Brackmann et al., J. Biol. Chem, 255:6772--6779, 1980). Two-dimensional tryptic peptide maps demonstrated that the 35K, 23K, 22K, 21K, and 18K polypeptides are related. The peptide map of 11K is different from those of the above polypeptides, although 11K may share one tryptic methionine polypeptide with them. These results indicate that E4 encodes a major 11K polypeptide, as well as major 35K, 23K, 22K, 21K, and 18K polypeptides.  相似文献   

8.
The properties of a naturally occurring temperature-sensitive (ts) mutant of human adenovirus type 7 (Ad7) were studied. Mutant Ad7 (19), or E46-, was the nonhybrid adenovirus component derived from the defective simian virus 40 (SV40)-Ad7 hybrid (PARA). Growth of the mutant was restricted at 40.5 degrees C, and the ratios of virus yields in KB cells at 40.5 and 33 degrees C were 10(-2) to 10(-3). Viral DNA synthesis and the synthesis of adenovirus-specific antigens (tumor, capsid, hexon, and penton antigens) appeared normal at the restrictive temperature. The assembly of virus particles was aberrant, as determined by thin-section of infected cells. The infectivity of mutant virions was heat labile at 50 degrees C, suggesting a ts defect in a structural component of the viron. Analysis by polyacrylamide gel electrophoresis of [35S]methionine-labeled polypeptides synthesized in mutant-infected cells suggested that at least the major virion polypeptides were synthesized at the restrictive temperature. A lack of inhibition of host protein synthesis late in mutant infections, as compared with wild-type (WT) infections at both the permissive and nonpermissive temperatures, made quantitation of infected-cell polypeptides difficult. Analysis of the assembly of capsomeres from cytoplasmic extracts of infected cells on sucrose gradients and by non-dissociating polyacrylamide gel electrophoresis suggested that hexon capsomeres were made at 40.5 degrees C. The hexon capsomeres made by the mutant at either 33 or 40.5 degrees C displayed a decreased migration in the non-dissociating gels compared with the WT hexon capsomeres. The molecular weights of the mutant and WT hexon polypeptides were identical. These results suggest that the ts lesion of this group B human Ad7 mutant may be reflected in altered hexons. The mutant Ad7 interfered with the replication of adenovirus types 2 and 21 at the elevated temperature.  相似文献   

9.
10.
(35S) methionine-labeled polypeptides synthesized by adenovirus type 2-infected cells have been analyzed by polyacrylamide gradient gel electrophoresis and autoradiography. Cycloheximide (CH) was added to infected cultures to accumulate early viral mRNA relative to host cell mRNA. This allowed viral proteins to be synthesized in increased amounts relative to host proteins after removal of CH and pulse-labeling with (35S)methionine. During the labeling period arabinosyl cytosine was added to prevent the synthesis of late viral proteins. This procedure facilitated the detection of six early viral-induced polypeptides, designated EP1 through EP6 (early protein), with apparent molecular weights of 75,000 (75K), 42K, 21K, 18K, 15K, and 11K. Supportive data were obtained by coelectrophoresis of (35S)- and (3H)methionine-labeled polypeptides from infected and uninfected cells, respectively. Three of these early polypeptides have not been previously reported. CH pretreatment enhanced the rates of synthesis of EP4 and EP6 20- to 30-fold and enhanced that of the others approximately twofold. The maximal rates of synthesis of the virus-induced proteins varied, in a different manner, with time postinfection and CH pretreatment. Since CH pretreatment appears to increase the levels of early viral proteins, it may be a useful procedure to assist their isolation and functional characterization.  相似文献   

11.
The human adenovirus 2 (Ad2) transformation genes are located in early region E1a (map position (mp) 1.3–4.5) and E1b (mp 4.6–11.2) on the linear duplex Ad2 DNA genome of Mr 23 × 106 (viral DNA is divided into 100 map units). E1b codes for three major proteins of apparent molecular weights 53,000 (53K), 19K, and 20K; smaller quantities of 21K, 22K, and 23K proteins that are related to 53K are also synthesized in Ad2-infected cells. Because the resolution and purification of these Ad2 candidate transformation proteins proved very difficult by conventional protein purification methods, the applicability of high-performance liquid chromatography (HPLC) methodology was examined. Starting with a crude cytoplasmic S100 fraction of Ad2-infected human cells, the resolution of the Ad2 E1b-coded 19K, 20K, 21K, 22K, and 23K proteins by reverse-phase HPLC using a C8 column and a linear 0–60% 1-propanol gradient in 0.5 m pyridine formate was achieved, E1b proteins purified under these conditions retained their immunological reactivity. By anion-exchange HPLC using a linear 10 mm to 1 m NaCl gradient in 10 mm 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.6, the same five Ad2 E1b-coded 19K–23K proteins were separated, with improved resolution of the 19K protein. Based on these findings, protocols for the extensive purification of the E1b-19K and E1b-20K proteins have been developed. These results illustrate the potential of HPLC methodology for the rapid purification of biologically interesting proteins from complex cellular mixtures of proteins.  相似文献   

12.
A comparison of the proteins synthesized in human cells at late times after infection with adenovirus (Ad2) and with the adeno-simian virus 40 (SV40) hybrid viruses revealed polypeptides of 30,000 and 92,000 molecular weight specific for the hybrid viruses Ad2+ND1 and Ad2+ND4, respectively. Cell-free translation of SV40-specific mRNA, prepared from these cells by hybridization of total cytoplasmic RNA to SV40 DNA, showed that the mRNA's specifying these two polypeptides were at least partially encoded by the SV40 portion of the hybrid viruses. Cell-free translation of SV40-specific mRNA prepared from monkey cells infected with SV40 produced polypeptides of 40,000, 43,000, 48,500, and 92,000 molecular weight. The SV40 and Ad2+ND4 92,000-molecular-weight polypeptides made in vitro were very similar in electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels to the polypeptide precipitated by Tegtmeyer (1974) with SV40 anti-T serum.  相似文献   

13.
14.
Messenger RNA was isolated from simian virus 40 (SV40)-infected and mock-infected cells by chromatography on poly(U) sepharose. When added to cell-free extracts from Chinese hamster ovary cells or rabbit reticulocytes, RNA from the infected cells, but not from mock-infected cells, stimulated synthesis of the major SV40 capsid protein. Identification of this species was done by sodium dodecyl sulfate gel electrophoresis, peptide mapping, and immunoprecipitation. The in vitro synthesized capsid protein was slightly different from virion assembled capsid protein, as shown by separation upon chromatography on hydroxylapatite and by minor differences in the peptide map.  相似文献   

15.
Adenovirus type 2 (Ad2) grows 1,000 times less well in monkey cells than in human cells. This defect can be overcome, not only upon co-infection of cells with simian virus 40 (SV40), but also when the relevant part of the SV40 genome is integrated into the adenovirus genome to form an adenovirus-SV40 hybrid virus. We have used the nondefective Ad2-SV40 hybrid virus Ad2+ND1, which contains an insertion of 17% of the SV40 genome, to isolate host-range mutants which are defective in growth on monkey cells although they grow normally on human cells. Like Ad2, these mutants are defective in the synthesis of late proteins in monkey cells. A 30,000-molecular-weight protein (30K), unique to Ad2+ND1-infected cells, can be synthesized in vitro, using Ad2+ND1 mRNA that contains SV40 sequences. 30K is not seen in cells infected with those host-range mutants that are most defective in growth on monkey cells, and translation in vitro of SV40-specific mRNA from these cells produces new unique polypeptides, instead of 30K. Genetic and biochemical analyses indicate that these mutants carry point mutations rather than deletions.  相似文献   

16.
Gene protein products of SA11 simian rotavirus genome   总被引:33,自引:18,他引:15  
When MA104 cells were infected with SA11 rotavirus, 12 protein classes, absent in mock-infected cells, could be distinguished by polyacrylamide gel electrophoresis. At least two of these proteins were glycosylated, and their synthesis could be blocked with tunicamycin. The oligosaccharides of both glycoproteins were cleaved by endo-beta-N-acetylglucosaminidase H, suggesting that they were residues of the "high-mannose" type. Of the 12 viral polypeptides observed in infected cells, 1 was probably the apoprotein of one of these glycoproteins; 5, including 1 glycoprotein, were structural components of the virions, whereas the other 6, including a second and possibly third glycoprotein, were nonstructural viral proteins. When the 11 double-stranded RNA genome segments of SA11 were translated, after denaturation, in an RNA-dependent cell-free translation system, at least 11 different polypeptides were synthesized. Ten of these polypeptides had electrophoretic migration patterns equal to those of viral proteins observed in tunicamycin-treated infected cells. Nine of the 11 double-stranded RNA genome segments were resolved by polyacrylamide gel electrophoresis and were translated individually. Two were not resolved from each other and therefore were translated together. Correlation of each synthesized polypeptide with an individual RNA segment allowed us to make a probable gene-coding assignment for the different SA11 genome segments.  相似文献   

17.
18.
19.
We have studied the ability of adenovirus type 12 (Ad12) to complement the Ad5 transformation-defective host rang (hr) mutants during infection of human cells (HeLa) or hamster cells (BHK-21). The group I mutant hr3 (mapped within 1.3 to 3.7 map units), which is incapable of synthesizing viral DNA, was complemented for both DNA synthesis and infectious virus production in nonpermissive HeLa cells during coinfection with Ad12. Similarly, the group II mutant hr6 (6.1 to 9.4 map units), which does synthesize DNA, was also shown to be complemented for virus production. When the host cells were BHK-21, an established hamster cell line that is permissive for Ad5 but nonpermissive for Ad12 DNA synthesis and virus production, coinfection with Ad5 and Ad12 did not overcome the block to Ad12 DNA synthesis. Coinfection of BHK-21 cells with Ad12 and either hr3 or hr6 leads to the complementation of only the group I mutant (hr3). The inability of Ad12 to complement hr6 in BHK-21 cells may be due to the failure of Ad12 to express an early gene product from the region corresponding to early region 1B (4.5 to 11 map units) Ad5 where hr6 and the other group II mutations are located.  相似文献   

20.
Experiments exploring the reasons for a multiplicity of products from early region 1A of adenovirus 5 are described. Labeled early region 1A products from wild-type virus were synthesized in infected cells and in a cell-free system programmed with mRNA from infected cells, immunoprecipitated specifically with an antipeptide serum, E1A-C1, directed against the C-terminal sequence of E1A products, and separated by gel electrophoresis. Two-dimensional maps of [35S]methionine-labeled peptides were consistent with antigens of 52,000 daltons (52K) and 48.5K being from the 13S mRNA and antigens of 50K, 45K, and 35K from the 12S mRNA. Partial N-terminal sequences of 52K, 50K, 48.5K, and 45K synthesized in vitro showed that each of these antigens was initiated at the predicted ATG at nucleotide 560 in the DNA sequence. These results eliminate multiple initiation sites and proteolytic cleavage at the N-terminal end as sources of antigen diversity. Peptide maps and N-terminal sequences were obtained in a similar way for E1A products from the Ad5 deletion mutant dl1504, which lacks the normal initiator codon. As predicted, these polypeptides are initiated at the next ATG, 15 codons downstream in the wild-type sequence. These results are discussed in relation to Kozak's ribosomal scanning model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号