首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ functions as an intracellular signal to transfer hormonal messages to different cellular compartments, including mitochondria, where it activates intramitochondrial Ca2+-dependent enzymes. However, excessive mitochondrial Ca2+ uptake can promote the mitochondrial permeability transition (MPT), a process known to be associated with cell injury. The factors controlling mitochondrial Ca2+ uptake and release in intact cells are poorly understood. In this paper, we investigate mitochondrial Ca2+ accumulation in intact hepatocytes in response to the elevation of cytosolic Ca2+ levels ([Ca2+]c) induced either by a hormonal stimulus (vasopressin), or by thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump. After stimulation, cells were rapidly permeabilized for the determination of the mitochondrial Ca2+ content (Ca2+_m) and to analyze the susceptibility of the mitochondria to undergo the MPT. Despite very similar levels of [Ca2+]c elevation, vasopressin and thapsigargin had markedly different effects on mitochondrial Ca2+ accumulation. Vasopressin caused a rapid (< 90 sec), but modest (< 2 fold) increase in Ca2+m that was not further increased during prolonged incubations, despite a sustained [Ca2+]c elevation. By contrast, thapsigargin induced a net Ca2+ accumulation in mitochondria that continued for up to 30 min and reached Ca2+_m levels 10–20 fold over basal. Accumulation of mitochondrial Ca2+ was accompanied by a markedly increased susceptibility to undergo the MPT. Both mitochondrial Ca2+ accumulation and MPT activation were modulated by treatment of the cells with inhibitors of protein kineses and phosphatases. The results indicate that net mitochondrial Ca2+ uptake in response to hormonal stimulation is regulated by processes that depend on protein kinase activation. These controls are inoperative when the cytosol is flooded by Ca2+ through artificial means, enabling mitochondria to function as a Ca2+ sink under these conditions. (Mol Cell Biochem 174: 173–179, 1997)  相似文献   

2.
Diethylpyrocarbonate inhibits Na+/Ca2+ antiport activity in isolated heart mitochondria. The inhibition is time-dependent with maximum activity developed after 5 min at 25°C. The reaction of diethylpyrocarbonate with the mitochondrial membrane is biphasic with 25–30 nmol mg–1 reacting rapidly and an additional 30 nmol mg–1 taken up slowly over a 30-min incubation. Inhibition of mitochondrial Na+/Ca2+ antiport by diethylpyrocarbonate decreases theV max of the reaction, and the inhibition cannot be reversed by washing the mitochondria or addition of excess histidine. The inhibition occurs at levels of inhibitor that have little or no effect on Ca2+ uptake, Na+/H+ antiport, or succinate respiration. A portion of the Na+-dependent efflux of Ca2+ is insensitive to diethylpyrocarbonate and this component is abolished by diltiazem. The mechanism by which diethylpyrocarbonate inactivates Na+/Ca2+ antiport is still uncertain, but may involve the modification of an unprotonated histidine residue in the transporter.  相似文献   

3.
Cerebral ischemia is a key pathophysiological feature of various brain insults. Inadequate oxygen supply can manifest regionally in stroke or as a result of traumatic brain injury or globally following cardiac arrest, all leading to irreversible brain damage. Mitochondrial function is essential for neuronal survival, since neurons critically depend on ATP synthesis generated by mitochondrial oxidative phosphorylation. Mitochondrial activity depends on Ca2+ and is fueled either by Ca2+ from the extracellular space when triggered by neuronal activity or by Ca2+ released from the endoplasmic reticulum (ER) and taken up through specialized contact sites between the ER and mitochondria known as mitochondrial-associated ER membranes. The coordination of these Ca2+ pools is required to synchronize mitochondrial respiration rates and ATP synthesis to physiological demands. In this review, we discuss the role of the proteins involved in mitochondrial Ca2+ homeostasis in models of ischemia. The proteins include those important for the Ca2+-dependent motility of mitochondria and for Ca2+ transfer from the ER to mitochondria, the tethering proteins that bring the two organelles together, inositol 1,4,5-triphosphate receptors that enable Ca2+ release from the ER, voltage-dependent anion channels that allow Ca2+ entry through the highly permeable outer mitochondrial membrane and the mitochondrial Ca2+ uniporter together with its regulatory proteins that permit Ca2+ entry into the mitochondrial matrix. Finally, we address those proteins important for the extrusion of Ca2+ from the mitochondria such as the mitochondrial Na+/Ca2+ exchanger or, if the mitochondrial Ca2+ concentration exceeds a certain threshold, the mitochondrial permeability transition pore.  相似文献   

4.
5.
Alloxan at millimolar concentrations slightly inhibited the velocity of Ca2+ uptake by isolated rat liver mitochondria irrespective of the free Ca2+ concentration between 1 and 10 µM and was an effective concentration-dependent stimulator of mitochondrial Ca2+ efflux. Ninhydrin also slightly inhibited the velocity of mitochondrial Ca2+ uptake but only at free Ca2+ concentrations above 5 µM. However, ninhydrin was a strong stimulator of mitochondrial Ca2+ efflux even at micromolar concentrations, 10–50 times more potent than alloxan. The mitochondrial membrane potential was reduced 10–20% at most by alloxan and ninhydrin. Alloxan and ninhydrin also stimulated Ca2+ efflux from isolated permeabilized liver cells. When isolated intact liver cells had been pre-incubated with alloxan or ninhydrin before permeabilization of the cells the ability of spermine to induce mitochondrial Ca2+ uptake was abolished. Glucose provided the typical protection against the effects of alloxan on mitochondrial Ca2+ transport only in experiments with intact cells but not in experiments with permeabilized cells or isolated mitochondria. Therefore glucose protection is apparently due to inhibition of alloxan uptake into the cell. Glucose provided no protection against effects of ninhydrin under any of the experimental conditions. Thus both alloxan and ninhydrin are potent stimulators of Ca2+ efflux by isolated mitochondria but very weak inhibitors of the velocity of mitochondrial Ca2+ uptake. The direct effects of ninhydrin on mitochondrial Ca2+ efflux may contribute to the cytotoxic action of this agent whereas the direct effects of alloxan on mitochondrial Ca2+ transport require concentrations which are too high to be of relevance for the induction of the typical pancreatic B-cell toxic effects of alloxan. However, the effects on mitochondrial Ca2+ transport during incubation of intact cells which may result from the generation of cytotoxic intermediates during alloxan xenobiotic metabolism may well contribute to the pancreatic B-cell toxic effect of alloxan. Mol Cell Biochem 118: 141–151, 1992)  相似文献   

6.
In the genetic disease cystic fibrosis (CF), the most common mutation F508del promotes the endoplasmic reticulum (ER) retention of misfolded CF proteins. Furthermore, in homozygous F508del-CFTR airway epithelial cells, the histamine Ca2+ mobilization is abnormally increased. Because the uptake of Ca2+ by mitochondria during Ca2+ influx or Ca2+ release from ER stores may be crucial for maintaining a normal Ca2+ homeostasis, we compared the mitochondria morphology and distribution by transmission electron microscopy technique and the mitochondria membrane potential variation (ΔΨmit) using a fluorescent probe (TMRE) on human CF (CF-KM4) and non-CF (MM39) tracheal serous gland cell lines. Confocal imaging of Rhod-2–AM-loaded or of the mitochondrial targeted cameleon 4mtD3cpv-transfected human CF and non-CF cells, were used to examine the ability of mitochondria to sequester intracellular Ca2+. The present study reveals that (i) the mitochondria network is fragmented in F508del-CFTR cells, (ii) the ΔΨmit of CF mitochondria is depolarized compared non-CF mitochondria, and (iii) the CF mitochondria Ca2+ uptake is reduced compared non-CF cells. We propose that these defects in airway epithelial F508del-CFTR cells are the consequence of mitochondrial membrane depolarization leading to a deficient mitochondrial Ca2+ uptake.  相似文献   

7.
It has been known for a long time that mitochondria isolated from hepatocytes treated with glucagon or Ca2+-mobilizing agents such as phenylephrine show an increase in their adenine nucleotide (AdN) content, respiratory activity, and calcium retention capacity (CRC). Here, we have studied the role of SCaMC-3/slc25a23, the mitochondrial ATP-Mg/Pi carrier present in adult mouse liver, in the control of mitochondrial AdN levels and respiration in response to Ca2+ signals as a candidate target of glucagon actions. With the use of SCaMC-3 knock-out (KO) mice, we have found that the carrier is responsible for the accumulation of AdNs in liver mitochondria in a strictly Ca2+-dependent way with an S0.5 for Ca2+ activation of 3.3 ± 0.9 μm. Accumulation of matrix AdNs allows a SCaMC-3-dependent increase in CRC. In addition, SCaMC-3-dependent accumulation of AdNs is required to acquire a fully active state 3 respiration in AdN-depleted liver mitochondria, although further accumulation of AdNs is not followed by increases in respiration. Moreover, glucagon addition to isolated hepatocytes increases oligomycin-sensitive oxygen consumption and maximal respiratory rates in cells derived from wild type, but not SCaMC-3-KO mice and glucagon administration in vivo results in an increase in AdN content, state 3 respiration and CRC in liver mitochondria in wild type but not in SCaMC-3-KO mice. These results show that SCaMC-3 is required for the increase in oxidative phosphorylation observed in liver mitochondria in response to glucagon and Ca2+-mobilizing agents, possibly by allowing a Ca2+-dependent accumulation of mitochondrial AdNs and matrix Ca2+, events permissive for other glucagon actions.  相似文献   

8.
The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner.  相似文献   

9.
Under high Ca2+ load conditions, Ca2+ concentrations in the extra-mitochondrial and mitochondrial compartments do not display reciprocal dynamics. This is due to a paradoxical increase in the mitochondrial Ca2+ buffering power as the Ca2+ load increases. Here we develop and characterize a mechanism of the mitochondrial Ca2+ sequestration system using an experimental data set from isolated guinea pig cardiac mitochondria. The proposed mechanism elucidates this phenomenon and others in a mathematical framework and is integrated into a previously corroborated model of oxidative phosphorylation including the Na+/Ca2+ cycle. The integrated model reproduces the Ca2+ dynamics observed in both compartments of the isolated mitochondria respiring on pyruvate after a bolus of CaCl2 followed by ruthenium red and a bolus of NaCl. The model reveals why changes in mitochondrial Ca2+ concentration of Ca2+ loaded mitochondria appear significantly mitigated relative to the corresponding extra-mitochondrial Ca2+ concentration changes after Ca2+ efflux is initiated. The integrated model was corroborated by simulating the set-point phenomenon. The computational results support the conclusion that the Ca2+ sequestration system is composed of at least two classes of Ca2+ buffers. The first class represents prototypical Ca2+ buffering, and the second class encompasses the complex binding events associated with the formation of amorphous calcium phosphate. With the Ca2+ sequestration system in mitochondria more precisely defined, computer simulations can aid in the development of innovative therapeutics aimed at addressing the myriad of complications that arise due to mitochondrial Ca2+ overload.  相似文献   

10.
α-Synuclein (αSyn) aggregation and mitochondrial dysfunction both contribute to the pathogenesis of Parkinson disease (PD). Although recent studies have suggested that mitochondrial association of αSyn may disrupt mitochondrial function, it is unclear what aggregation state of αSyn is most damaging to mitochondria and what conditions promote or inhibit the effect of toxic αSyn species. Because the neuronal populations most vulnerable in PD are characterized by large cytosolic Ca2+ oscillations that burden mitochondria, we examined mitochondrial Ca2+ stress in an in vitro system comprising isolated mitochondria and purified recombinant human αSyn in various aggregation states. Using fluorimetry to simultaneously measure four mitochondrial parameters, we observed that soluble, prefibrillar αSyn oligomers, but not monomeric or fibrillar αSyn, decreased the retention time of exogenously added Ca2+, promoted Ca2+-induced mitochondrial swelling and depolarization, and accelerated cytochrome c release. Inhibition of the permeability transition pore rescued these αSyn-induced changes in mitochondrial parameters. Interestingly, the mitotoxic effects of αSyn were specifically dependent upon both electron flow through complex I and mitochondrial uptake of exogenous Ca2+. Our results suggest that soluble prefibrillar αSyn oligomers recapitulate several mitochondrial phenotypes previously observed in animal and cell models of PD: complex I dysfunction, altered membrane potential, disrupted Ca2+ homeostasis, and enhanced cytochrome c release. These data reveal how the association of oligomeric αSyn with mitochondria can be detrimental to the function of cells with high Ca2+-handling requirements.  相似文献   

11.
Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca2+ handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca2+ dynamics in this cell type. We found that in hepatocytes isolated from Hint2−/− mice, the frequency of Ca2+ oscillations induced by 1 μM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca2+ pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2−/− mice; we found that Hint2 accelerates Ca2+ pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca2+ in suspensions of mitochondria. This prediction was then confirmed experimentally.  相似文献   

12.
A hydrophobic, low-molecular weight component extracted from mitochondria forms aCa2+-activated ion channel in black-lipid membranes (Mironova et al., 1997). At pH 8.3–8.5, thecomponent has a high-affinity binding site for Ca2+ with a Kd of 8 × 10–6 M, while at pH7.5 this Kd was decreased to 9 × 10–5 M. Bmax for the Ca2+-binding site did not changesignificantly with pH. In the range studied, 0.2 ± 0.06 mmol Ca2+/g component were boundor one calcium ion to eight molecules of the component. The Ca2+ binding was stronglydecreased by 50–100 mM Na+, but not by K+. Treatment of mitochondria withCaCl2 priorto ethanolic extraction resulted in a high level of Ca2+-binding capacity of the partially purifiedcomponent. Cyclosporin A, a specific inhibitor of the mitochondrial permeability transition,when added to the mitochondrial suspension, decreased the Ca2+-binding activity of thepurified extract severalfold. The calcium-binding capability of the partially purified componentcorrelates with its calcium-channel activity. This indicates that the channel-forming componentmight be involved in the permeability transition that stimulates its formation.  相似文献   

13.
Minocycline (an anti-inflammatory drug approved by the FDA) has been reported to be effective in mouse models of amyotrophic lateral sclerosis and Huntington disease. It has been suggested that the beneficial effects of minocycline are related to its ability to influence mitochondrial functioning. We tested the hypothesis that minocycline directly inhibits the Ca2+-induced permeability transition in rat liver mitochondria. Our data show that minocycline does not directly inhibit the mitochondrial permeability transition. However, minocycline has multiple effects on mitochondrial functioning. First, this drug chelates Ca2+ ions. Secondly, minocycline, in a Ca2+-dependent manner, binds to mitochondrial membranes. Thirdly, minocycline decreases the proton-motive force by forming ion channels in the inner mitochondrial membrane. Channel formation was confirmed with two bilayer lipid membrane models. We show that minocycline, in the presence of Ca2+, induces selective permeability for small ions. We suggest that the beneficial action of minocycline is related to the Ca2+-dependent partial uncoupling of mitochondria, which indirectly prevents induction of the mitochondrial permeability transition.  相似文献   

14.
Growing evidence suggests that astrocytes are the active partners of neurons in many brain functions. Astrocytic mitochondria are highly motile organelles which regulate the temporal and spatial patterns of Ca 2+ dynamics, in addition to being a major source of ATP and reactive oxygen species. Previous studies have shown that mitochondria translocate to endoplasmic reticulum during Ca 2+ release from internal stores, but whether a similar spatial interaction between mitochondria and plasma membrane occurs is not known. Using total internal reflection fluorescence (TIRF) microscopy we show that a fraction of mitochondria became trapped near the plasma membrane of cultured hippocampal astrocytes during exposure to the transmitters glutamate or ATP, resulting in net translocation of the mitochondria to the plasma membrane. This translocation was dependent on the intracellular Ca 2+ rise because it was blocked by pre-incubation with BAPTA AM and mimicked by application of the Ca 2+ ionophore ionomycin. Transmembrane Ca 2+ influx induced by raising external Ca 2+ also caused mitochondrial trapping, which occurred more rapidly than that produced by glutamate or ATP. In astrocytes treated with the microtubule-disrupting agent nocodazole, intracellular Ca 2+ rises failed to induce trapping of mitochondria near plasma membrane, suggesting a role for microtubules in this phenomenon. Our data reveal the Ca 2+ -dependent trapping of mitochondria near the plasma membrane as a novel form of mitochondrial regulation, which is likely to control the perimembrane Ca 2+ dynamics and regulate signaling by mitochondria-derived reactive oxygen species. Electronic Supplementary Materials Supplementary Materials is available in the online version of this article at  相似文献   

15.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   

16.
《Cell calcium》2015,57(6):457-466
Mitochondrial Ca2+ plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca2+ imaging is an important approach to understand mitochondrial Ca2+ dynamics. Recently developed GCaMP genetically-encoded Ca2+ indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca2+ imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca2+ dynamics in culture, revealing Ca2+ uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca2+ indicators, our results show that mitochondrial Ca2+ uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca2+ dynamics on cytosolic Ca2+ changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca2+ increase using mito-GCaMP5G and a synthetic organic Ca2+ indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca2+ signaling pathway, our results demonstrated that the mitochondrial Ca2+ uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca2+ dynamics as well as Ca2+ interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.  相似文献   

17.
The effects of hydrophobic and hydrophilic bile acids as inducers of Ca2+-dependent permeability of the inner membrane were studied on isolated liver mitochondria. It is shown that in the absence of the inorganic phosphate (Pi)–a modulator of the mitochondrial pore–hydrophobic bile acids (lithocholic, deoxycholic, chenodeoxycholic) at concentrations of 20–50 μM, as well as a hydrophilic cholic acid at a concentration of 800 μM, induce swelling of liver mitochondria loaded with Ca2+. This effect is completely eliminated by a specific inhibitor of mitochondrial pore cyclosporin A (CsA). The effect of the bile acids as inducers of Ca2+-dependent CsA-sensitive mitochondrial pore is not associated with the modulation of the Pi effects. In contrast to other tested bile acids, a hydrophilic ursodeoxycholic acid (UDCA) at a concentration of 400 μM is able to induce Ca2+-dependent CsA-sensitive pore opening in liver mitochondria only in the presence of Pi or in the absence of potassium chloride in the incubation medium. In the presence of potassium chloride but in the absence of Pi, UDCA effects associated with the induction of the inner membrane permeability (swelling of mitochondria, drop in Δψ, and Ca2+ release from the matrix) are also observed in the presence of CsA. This Ca2+-dependent permeability of the inner membrane, in contrast to the “classical” CsA-sensitive pore, is characterized by a lower intensity of the mitochondrial swelling, a total drop in Δψ, and Ca2+ release from the matrix and is blocked by Pi. We suggest that the induction of the CsA-insensitive permeability in the inner mitochondrial membrane by UDCA is associated with activation of electrophoretic influx of K+ into the matrix and Ca2+ release from the matrix in exchange to H+. The effect of Pi as a blocker of such permeability is discussed.  相似文献   

18.
The effect of the most hydrophobic bile acid–lithocholic–as an inducer of two different Ca2+-dependent inner membrane permeability systems was studied on isolated rat liver mitochondria. It is shown that the addition of lithocholic acid at a concentration of 20 μM to the Ca2+-loaded mitochondria leads to swelling of the organelles, rapid release of Ca2+ from the matrix and almost complete collapse of Δψ. Mitochondrial pore blocker cyclosporin A (CsA) eliminates mitochondrial swelling but has no effect on the process of Ca2+ release and Δψ collapse. In the absence of Ca2+ lithocholic acid causes only a transient decrease of Δψ with subsequent complete recovery. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, which blocks Ca2+ influx into the matrix, prevents mitochondrial swelling induced by lithocholic acid. At the same time, ruthenium red, which is added before lithocholic acid to the Ca2+-preloaded mitochondria, does not affect the swelling of the organelles but reduces the CsA-insensitive drop in Δψ. It is concluded that lithocholic acid is able to induce two Ca2+-dependent energy dissipation systems in the inner membrane of liver mitochondria: CsA-sensitive mitochondrial pore and CsA-insensitive permeability, which exhibits sensitivity to ruthenium red. It is found that the effect of this bile acid as an inductor of CsA-sensitive mitochondrial pore is not associated with the modulation of Pi effects. It is assumed that CsA-insensitive action of lithocholic acid is associated with the induction of Ca2+ efflux from the matrix in exchange for protons. In this case, the energy-dependent Ca2+ transport in the opposite direction with the participation of mitochondrial calcium uniporter sensitive to ruthenium red leads to the formation of calcium cycle and thereby to energy dissipation.  相似文献   

19.
The paper examines membranotropic Ca2+-dependent effects of ω-hydroxypalmitic acid (HPA), a product of ω-oxidation of fatty acids, on the isolated rat liver mitochondria and artificial membrane systems (liposomes). It was established that in the presence of Ca2+, HPA induced aggregation of liver mitochondria, which was accompanied by the release of cytochrome c from the organelles. It was further demonstrated that the addition of Ca2+ to HPA-containing liposomes induced their aggregation and/or fusion. Ca2+ also caused the release of the fluorescent dye sulforhodamine B from liposomes, indicating their permeabilization. HPA was shown to induce a high-amplitude swelling of Ca2+-loaded mitochondria, to decrease their membrane potential, to induce the release of Ca2+ from the organelles and to result in the oxidation of the mitochondrial NAD(P)H pool. Those effects of HPA were not blocked by the MPT pore inhibitor CsA, but were suppressed by the mitochondrial calcium uniporter inhibitor ruthenium red. The effects of HPA were also observed when Ca2+ was replaced with Sr2+ (but not with Ba2+ or Mg2+). A supposition is made that HPA can induce a Ca2+-dependent aggregation of mitochondria, as well as Ca2+dependent CsA-insensitive permeabilization of the inner mitochondrial membrane – with the subsequent lysis of the organelles.  相似文献   

20.
The effect of fasting on calcium content and Ca2+-ATPase activity in the brain tissues of 5 weeks and 50 weeks old rats was investigated. Brain calcium content and Ca2+-ATPase activity in the microsomal and mitochondrial fractions of the brain homogenate from young and elderly rats were significantly increased by overnight–fasting. These increases were appreciably restored by a single oral administration of glucose solution (400 mg/100 g body weight) to fasted rats. In comparison with young and elderly rats, brain calcium content and microsomal Ca2+-ATPase activity were significantly elevated by increasing ages. The effect of ageing was not seen in the brain mitochondrial Ca2+-ATPase activity. When calcium (50 mg/100 g) was orally administered to young and elderly rats, brain calcium content was significantly elevated. The calcium administration–induced increase in brain calcium content was greater in elderly r crease in Ca2+-ATPase activity in the microsomal and mitochondrial fractions of brain homogenates from young rats. In aged rats, the microsomal Ca2+-ATPase activity was not further enhanced by calcium administration, although the mitochondrial enzyme activity was significantly raised. The present study demonstrates that the fasting–induced increase in brain calcium content is involved in Ca2+-ATPase activity raised in the brain microsomes and mitochondria of rats with different ages, supporting a energy–dependent mechanism in brain calcium accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号