首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha4beta1 integrin affinity changes govern cell adhesion   总被引:3,自引:0,他引:3  
Integrin alpha4beta1 is a receptor for vascular cell adhesion molecule-1 and fibronectin. It is important in lymphopoiesis, inflammatory recruitment of leukocytes, and other situations that require cell adhesion to the vascular endothelium. The avidity of the cells expressing alpha4beta1 integrin can be rapidly changed by chemokines and chemoattractants. Different mechanisms, including changes in the number of interacting molecules due to the alteration of the receptor topology or changes in the affinity of the individual bonds, have been proposed to explain the nature of these fast changes in avidity. Recently, we described a fluorescent LDV-containing small molecule, which we used to monitor the affinity changes on live cells in real time (Chigaev, A., Blenc, A. M., Braaten, J. V., Kumaraswamy, N., Kepley, C. L., Andrews, R. P., Oliver, J. M., Edwards, B. S., Prossnitz, E. R., Larson, R. S. et al. (2001) J. Biol. Chem. 276, 48670-48678). Here we show that the affinity of the small molecule probe as well as the native ligand vascular cell adhesion molecule-1 varies in parallel when the integrin is modulated with divalent cations and that the affinity modulation leads to the changes in cell avidity. Using formyl peptide receptor-transfected U937 cells, we further show that the time course of avidity changes in response to the receptor activation coincides with the time course of the affinity changes. Taken together, these data are consistent with the idea that affinity regulation is a major factor that governs the avidity of cell adhesion mediated by the alpha4 integrin.  相似文献   

2.
The alpha(4)beta(1)-integrin (very late antigen-4 (VLA-4), CD49d/CD29) is an adhesion receptor involved in the interaction of lymphocytes, dendritic cells, and stem cells with the extracellular matrix and endothelial cells. This and other integrins have the ability to regulate their affinity for ligands through a process termed "inside-out" signaling that affects cell adhesion avidity. Several mechanisms are known to regulate integrin affinity and conformation: conformational changes induced by separation of the C-terminal tails, divalent ions, and reducing agents. Recently, we described a fluorescent LDV-containing small molecule that was used to monitor VLA-4 affinity changes in live cells (Chigaev, A., Blenc, A. M., Braaten, J. V., Kumaraswamy, N., Kepley, C. L., Andrews, R. P., Oliver, J. M., Edwards, B. S., Prossnitz, E. R., Larson, R. S., and Sklar, L. A. (2001) J. Biol. Chem. 276, 48670-48678). Using the same molecule, we also developed a fluorescence resonance energy transfer-based assay to probe the "switchblade-like" opening of VLA-4 upon activation. Here, we investigated the effect of reducing agents on the affinity and conformational state of the VLA-4 integrin simultaneously with cell activation initiated by inside-out signaling through G protein-coupled receptors or Mn(2+) in live cells in real time. We found that reducing agents (dithiothreitol and 2,3-dimercapto-1-propanesulfonic acid) induced multiple states of high affinity of VLA-4, where the affinity change was accompanied by an extension of the integrin molecule. Bacitracin, an inhibitor of the reductive function of the plasma membrane, diminished the effect of dithiothreitol, but had no effect on inside-out signaling. Based on this result and differences in the kinetics of integrin activation, we conclude that conformational activation of VLA-4 by inside-out signaling is independent of and additive to reduction-regulated integrin activation.  相似文献   

3.
Integrins are cell adhesion receptors, expressed on every cell type, that have been postulated to undergo conformational changes upon activation. Here, different affinity states were generated by exposing alpha4-integrins to divalent ions or by inside-out activation using a chemokine receptor. We probed the dynamic structural transformation of the integrin on live cells using fluorescence resonance energy transfer (FRET) between a peptide donor, which specifically binds to the alpha4-integrin, and octadecyl rhodamine B acceptors incorporated into the plasma membrane. We analyzed the data using a model that describes FRET between a random distribution of donors and acceptors in an infinite plane. The distance of closest approach was found to vary with the affinity of the integrin. The change in distance of closest approach was approximately 50 A between resting and Mn2+ activated receptors and approximately 25 A after chemokine activation. We used confocal microscopy to probe the lateral organization of donors and acceptors subsequent to integrin activation. Taken together, FRET and confocal results suggest that changes in FRET efficiencies are primarily due to the vertical extension of the integrin. The coordination between the extension of alpha4-integrin and its affinity provides a mechanism for Dembo's catch-bond concept.  相似文献   

4.
5.
Regulation of the fibronectin receptor affinity by divalent cations   总被引:38,自引:0,他引:38  
The cell surface receptor for fibronectin is a heterodimeric membrane protein that recognizes an Arg-Gly-Asp sequence in fibronectin and that requires cations such as Mg2+ or Ca2+ for binding to fibronectin. The divalent cation requirements of this receptor were analyzed by measuring attachment of receptor liposomes to ligand-coated surfaces in the presence of different cations. The most striking effect observed was produced by Mn2+, which increased the binding of the receptor liposomes to fibronectin 2-3-fold over their binding in buffers containing Ca2+ and Mg2+. The binding activities of two related adhesion receptors, the vitronectin receptor and platelet GP IIb-IIIa, were supported but not enhanced by Mn2+. Two observations suggest that Mn2+ can compete with Ca2+ for the same cation-binding sites of the receptor. First, Mn2+ could still enhance fibronectin receptor binding activity even in the presence of 10-fold higher concentrations of Ca2+ or Mg2+. Second, Mn2+ inhibited the binding of radioactive Ca2+ to the alpha subunit of the receptor. The increased fibronectin receptor activity in the presence of Mn2+ appeared to be due to an increase in the affinity of the receptor for the Arg-Gly-Asp sequence because a 110-kDa cell attachment fragment and a synthetic hexapeptide containing the Arg-Gly-Asp sequence inhibited liposome binding more effectively in the presence of Mn2+ than in the presence of Ca2+/Mg2+. The affinity for the peptide was affected more than the affinity for the fragment, indicating that Mn2+ also induces a change in receptor specificity. Increased receptor binding in the presence of Mn2+ was also apparent in affinity chromatography of the fibronectin receptor on the 110-kDa fibronectin fragment; Mn2+ improved the yield of the receptor 4-fold. Mn2+ similarly increased the number of receptor-fibronectin complexes in preparations analyzed by electron microscopy. These results show that exogenous influences can modulate the affinity and specificity with which the fibronectin receptor binds to its ligands.  相似文献   

6.
In T-lymphocytes the Ras-like small GTPase Rap1 plays an essential role in stimulus-induced inside-out activation of integrin LFA-1 (alpha(L)beta(2)) and VLA-4 (alpha(4)beta(1)). Here we show that Rap1 is also involved in the direct activation of these integrins by divalent cations or activating antibodies. Inhibition of Rap1 either by Rap GTPase-activating protein (RapGAP) or the Rap1 binding domain of RalGDS abolished both Mn(2+)- and KIM185 (anti-LFA-1)-induced LFA-1-mediated cell adhesion to intercellular adhesion molecule 1. Mn(2+)- and TS2/16 (anti-VLA-4)-induced VLA-4-mediated adhesion were inhibited as well. Interestingly, both Mn(2+), KIM185 and TS2/16 failed to induce elevated levels of Rap1GTP. These findings indicate that available levels of GTP-bound Rap1 are required for the direct activation of LFA-1 and VLA-4. Pharmacological inhibition studies demonstrated that both Mn(2+)- and KIM185-induced adhesion as well as Rap1-induced adhesion require intracellular calcium but not signaling activity of the MEK-ERK pathway. Moreover, functional calmodulin signaling was shown to be a prerequisite for Rap1-induced adhesion. From these results we conclude that in addition to stimulus-induced inside-out activation of integrins, active Rap1 is required for cell adhesion induced by direct activation of integrins LFA-1 and VLA-4. We suggest that Rap1 determines the functional availability of integrins for productive binding to integrin ligands.  相似文献   

7.
Shear promotes endothelial recruitment of leukocytes, cell activation, and transmigration. Mechanical stress on cells caused by shear can induce a rapid integrin conformational change and activation, followed by an increase in binding to the extracellular matrix. The molecular mechanism of increased avidity is unknown. We have shown previously that the affinity of the alpha(4)beta(1) integrin, very late antigen-4 (VLA-4), measured with an LDV-containing small molecule, varies with cellular avidity, measured from cell disaggregation rates. In this study, we measured in real time affinity changes of VLA-4 in response to shear. The resulting affinity was comparable with the state mediated by receptor signaling and corresponded in time with intracellular Ca(2+) responses. Ca(2+) ionophores and N,N'-[1,2-ethanediyl-bis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl]ester demonstrate that the affinity regulation of VLA-4 in the presence of shear was related to Ca(2+) signaling. Pertussis toxin treatment implicates G(i) in an unknown pathway that connects shear, Ca(2+) elevation, VLA-4 affinity, and cell avidity.  相似文献   

8.
VLA-4 and LFA-1 are the major vascular integrins expressed on circulating lymphocytes. Previous studies suggested that intact cholesterol rafts are required for integrin adhesiveness in different leukocytes. We found the alpha(4) integrins VLA-4 and alpha(4)beta(7) as well as the LFA-1 integrin to be excluded from rafts of human peripheral blood lymphocytes. Disruption of cholesterol rafts with the chelator methyl-beta-cyclodextrin did not affect the ability of these lymphocyte integrins to generate high avidity to their respective endothelial ligands and to promote lymphocyte rolling and arrest on inflamed endothelium under shear flow. In contrast, cholesterol extraction abrogated rapid chemokine triggering of alpha(4)-integrin-dependent peripheral blood lymphocytes adhesion, a process tightly regulated by G(i)-protein activation of G protein-coupled chemokine receptors (GPCR). Strikingly, stimulation of LFA-1 avidity to intercellular adhesion molecule 1 (ICAM-1) by the same chemokines, although G(i)-dependent, was insensitive to raft disruption. Our results suggest that alpha(4) but not LFA-1 integrin avidity stimulation by chemokines involves rapid chemokine-induced GPCR rearrangement that takes place at cholesterol raft platforms upstream to G(i) signaling. Our results provide the first evidence that a particular chemokine/GPCR pair can activate different integrins on the same cell using distinct G(i) protein-associated machineries segregated within defined membrane compartments.  相似文献   

9.
Chemokines bind to sulfated cell surface glycosaminoglycans and thereby modulate signaling mediated by G-protein-coupled seven-transmembrane domain chemokine receptors. Similar to glycosaminoglycans, sulfated oligosaccharides are also exposed on the cell surface by sulfatides, a class of glycosphingolipids. We have now identified sulfated glycosphingolipids (sulfatides) as novel binding partners for chemokines. Using surface plasmon resonance (SPR), the binding of proinflammatory and homeostatic chemokines to glycosphingolipids, in particular sulfatides, was investigated. Chemokines were immobilized while glycosphingolipids or additional phospholipids incorporated into liposomes were applied as soluble analytes. A specific affinity of the chemokines MCP-1/CCL2, IL-8/CXCL8, SDF-1alpha/CXCL12, MIP-1alpha/CCL3 and MIP-1beta/CCL4 to the sulfatides SM4s, SM3, SM2a and SB2, SB1a was detected. No significant interactions with the chemokines were observed for gangliosides, neutral glycosphingolipids or phospholipids. Chemokine receptors have been associated with the detergent-insoluble fraction supposed to contain 'rafts', i.e., glycosphingolipid enriched microdomains of the cell surface. Accordingly, the data suggest that early chemokine receptor signaling may take place in the vicinity of sulfated glycosphingolipids on the cell surface, whereby these sulfatides could modulate the chemokine receptor-mediated cell activation signal.  相似文献   

10.
To investigate the functional significance of putative integrin divalent cation binding sites, several mutated alpha 4 subunit cDNAs were constructed. Mutants contained the conservative substitution of Glu for Asp or Asn at the third position in each of three putative divalent cation sites. Transfection of wild-type or mutated alpha 4 into K562 cells yielded comparable expression levels and immunoprecipitation profiles. However, for all three alpha 4 mutants, adhesion to CS1/fibronectin was greatly diminished in either the presence or absence of the stimulatory anti-beta 1 mAb TS2/16. Constitutive adhesion to vascular cell adhesion molecule (VCAM) 1 was also diminished but, unlike CS1 adhesion, was restored upon TS2/16 stimulation. In contrast, adhesion to the bacterial protein invasin was minimally affected by any of the three mutations. For each of the mutants, the order of preference for divalent cations was unchanged compared to wild-type alpha 4, on CS1/fibronectin (Mn2+ > Mg2+ > Ca2+), on VCAM-1 (Mn2+ > Mg2+ = Ca2+) and on invasin (Mg2+ = Ca2+). However for the three mutants, the efficiency of divalent cation utilization was decreased. On VCAM-1, 68-108 microM Mn2+ was required to support half-maximal adhesion for the mutants compared with 14-18 microM for wild-type alpha 4. These results indicate (a) that three different ligands for VLA-4 show widely differing sensitivities to mutations within putative divalent cation sites, and (b) each of the three putative divalent cation sites in alpha 4 have comparable functional importance with respect to both divalent cation usage and cell adhesion.  相似文献   

11.
In sickle cell anemia, reticulocytes express enhanced levels of α4β1 integrin that interact mainly with vascular cell adhesion molecule-1 and fibronectin, promoting vaso-occlusion. These interactions are known to be highly sensitive to the inflammatory chemokine IL-8. The Duffy antigen receptor for chemokines (DARC) modulates the function of inflammatory processes. However, the link between α4β1 activation by chemokines and DARC erythroid expression is not or poorly explored. Therefore, the capacity of α4β1 to mediate Duffy-negative and Duffy-positive sickle reticulocyte (SRe) adhesion to immobilized vascular cell adhesion molecule-1 and fibronectin was evaluated. Using static adhesion assays, we found that, under basal conditions, Duffy-positive SRe adhesion was 2-fold higher than that of Duffy-negative SRes. Incubating the cells with IL-8 or RANTES (regulated on activation normal T cell expressed and secreted) increased Duffy-positive SRe adhesion only, whereas Mn(2+) increased cell adhesion independently of the Duffy phenotype. Flow cytometry analyses performed with anti-β1 and anti-α4 antibodies, including a conformation-sensitive one, in the presence or absence of IL-8, revealed that Duffy-positive and Duffy-negative SRes displayed similar erythroid α4β1 expression levels, but with distinct activation states. IL-8 did not affect α4β1 affinity in Duffy-positive SRes but induced its clustering as corroborated by immunofluorescence microscopy. Our results indicate that in Duffy-negative SRes α4β1 integrin is constitutively expressed in a low affinity state, whereas in Duffy-positive SRes α4β1 is expressed in a higher chemokine-sensitive affinity state. This activation state associated with DARC RBC expression may influence the intensity of the inflammatory responses encountered in sickle cell anemia and participate in its interindividual clinical expression variability.  相似文献   

12.
Integrin receptor alpha(2)beta(1) requires micromolar Ca(2+) to bind to collagen and to the peptide GPC(GPP)(5)GFOGER(GPP)(5)GPC (denoted GFOGER-GPP, where O represents hydroxyproline), which contains the minimum recognition sequence for the collagen-binding alpha(2) I-domain (Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (2000) J. Biol. Chem. 275, 35-40). Platelet adhesion to these ligands is completely dependent on alpha(2)beta(1) in the presence of 2 mm Mg(2+). However, we show here that this interaction was abolished in the presence of 25 microm EGTA. Adhesion of Glanzmann's thrombasthenic platelets, which lack the fibrinogen receptor alpha(IIb)beta(3), was also inhibited by micromolar EGTA. Mg(2+)-dependent adhesion of platelets was restored by the addition of 10 microm Ca(2+), but millimolar Ca(2+) was inhibitory. Binding of isolated alpha(2)beta(1) to GFOGER-GPP was 70% inhibited by 50 microm EGTA but, as with intact platelets, was fully restored by the addition of micromolar Ca(2+). 2 mm Ca(2+) did not inhibit binding of isolated alpha(2)beta(1) to collagen or to GFOGER-GPP. Binding of recombinant alpha(2) I-domain was not inhibited by EGTA, nor did millimolar Ca(2+) inhibit binding. Our data suggest that high affinity Ca(2+) binding to alpha(2)beta(1), outside the I-domain, is essential for adhesion to collagen. This is the first demonstration of a Ca(2+) requirement in alpha(2)beta(1) function.  相似文献   

13.
We have used the highly specific alpha4beta1 inhibitor 4-((N'-2-methylphenyl)ureido)-phenylacetyl-leucine-aspartic acid-valine-proline (BIO1211) as a model LDV-containing ligand to study alpha4beta1 integrin-ligand interactions on Jurkat cells under diverse conditions that affect the activation state of alpha4beta1. Observed KD values for BIO1211 binding ranged from a value of 20-40 nM in the non-activated state of the integrin that exists in 1 mM Mg2+, 1 mM Ca2+ to 100 pM in the activated state seen in 2 mM Mn2+ to 18 pM when binding was measured after co-activation by 2 mM Mn2+ plus 10 microgram/ml of the integrin-activating monoclonal antibody TS2/16. The large range in KD values was governed almost exclusively by differences in the dissociation rates of the integrin-BIO1211 complex, which ranged from 0.17 x 10(-4) s-1 to >140 x 10(-4) s-1. Association rate constants varied only slightly under the same conditions, all falling in the narrow range from 0.9 to 2.7 x 10(6) M-1 s-1. The further increase in affinity observed upon co-activation by divalent cations and TS2/16 compared with that observed at saturating concentrations of metal ions or TS2/16 alone indicates that the mechanism by which these factors bring about activation are distinct and identified a previously unrecognized high affinity state on alpha4beta1 that had not been detected by conventional assay methods. Similar changes in affinity were observed when the binding properties of vascular cell adhesion molecule-1 and CS1 to alpha4beta1 were studied, indicating that the different affinity states detected with BIO1211 are an inherent property of the integrin.  相似文献   

14.
During an infection, neutrophils are the first immune cells to arrive armed to clear the invading pathogen. In order to do so, neutrophils need to transmigrate from the peripheral blood through the endothelial layer toward the site of inflammation. This process is in most cases dependent on integrins, adhesion molecules present on all immune cells. These molecules are functionally regulated by “inside-out” signaling, where stimulus-induced signaling pathways act on the intracellular integrin tail to regulate the activity of the receptor on the outside. Both a change in conformation (affinity) and clustering (avidity/valency) of the receptors occurs and many factors have been linked to regulation of integrins on neutrophils. Control of integrin conformation and clustering is of pivotal importance for proper cell adhesion, migration, and bacterial clearance. Recently, gelsolin was found to be involved in β1-integrin affinity regulation and cell adhesion. Here, I summarize the role of neutrophil integrin regulation in the essential steps to reach the site of inflammation and clearance of bacterial pathogens.  相似文献   

15.
《The Journal of cell biology》1996,134(6):1551-1562
Integrin cell surface adhesion receptors play a central role in mediating cell migration. We have developed a model system consisting of CHO cells ectopically expressing the alpha IIb beta 3 integrin to study integrin affinity and cytoskeletal interactions during cell migration. The alpha IIb beta 3 integrins are suited for study of integrin receptors during cell migration because they are well characterized with respect to ligand binding, cytoskeletal interactions, and signal transduction, and mutants with altered receptor function are available. The alpha IIb beta 3 receptor specifically mediates migration of alpha IIb beta 3-transfected CHO cells. The migration of transfected CHO cells was studied on a fibrinogen substrate both by time lapse videomicroscopy and by random and haptotactic transwell assays. Haptotactic and random transwell assays measured distinct aspects of migration, with the random transwell assay correlating most closely with time lapse videomicroscopy. Mutations in the cytoplasmic domains that increase ligand affinity or activation of the alpha IIb beta 3 receptor into a high affinity state by the LIBS6 antibody decreased the migration rate. Likewise, mutations that increase cytoskeletal organization without affecting affinity also decreased the migration rate. In contrast, truncation of the beta chain, which alters cytoskeletal associations as assayed by absence of focal adhesions, decreased haptotactic migration while increasing random migration. These effects on the migration rate were partially compensated for by altering substrate concentration, demonstrating optimum substrate concentrations that supported maximal migration. For example, cells expressing integrins locked in the high affinity state showed maximal migration at lower substrate concentrations than cells expressing low affinity receptor. Together, these results implicate the strength of adhesion between cell and substrate, as modulated by receptor affinity, organization of adhesive complexes, and substrate concentration, as important regulators of cell migration rate. Further, we demonstrate a dominant effect of high affinity integrin in inhibiting migration regardless of the organization of adhesive complexes. These observations have potential implications for tumor metastasis and its therapy.  相似文献   

16.
To elucidate the role of the cytoskeleton regulating avidity or affinity changes in the leukocyte adhesion receptor lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)beta(2)), we generated mutant cytoplasmic LFA-1 receptors and expressed these into the erythroleukemic cell line K562. We determined whether intercellular adhesion molecule-1 (ICAM-1)-mediated adhesion of LFA-1, lacking parts of its cytoplasmic tails, is regulated through receptor diffusion/clustering and/or by altered ligand binding affinity. All cytoplasmic deletion mutants that lack the complete beta(2) cytoplasmic tail and/or the conserved KVGFFKR sequence in the alpha(L) cytoplasmic tail were constitutively active and expressed high levels of the activation epitopes NKI-L16 and M24. Surprisingly, whereas these mutants showed a clustered cell surface distribution of LFA-1, the ligand-binding affinity as measured by titration of soluble ligand ICAM-1 remained unaltered. The notion that redistribution of LFA-1 does not alter ligand-binding affinity is further supported by the finding that disruption of the cytoskeleton by cytochalasin D did not alter the binding affinity nor adhesion to ICAM-1 of these mutants. Most cytoplasmic deletion mutants that spontaneously bound ICAM-1 were not capable to spread on ICAM-1, demonstrating that on these mutants LFA-1 is not coupled to the actin cytoskeleton. From these data we conclude that LFA-1-mediated cell adhesion to ICAM-1 is predominantly regulated by receptor clustering and that affinity alterations do not necessarily coincide with strong ICAM-1 binding.  相似文献   

17.
alpha 1-Adrenergic receptors from a cultured smooth muscle cell line (DDT1 MF-2) have been solubilized with digitonin and purified to apparent homogeneity by sequential chromatography on a biospecific affinity support (Sepharose-A55453 (4-amino-6,7-dimethoxy-2-[4-[5-(4-amino-3-phenyl) pentanoyl]-1-piperazinyl]-quinazoline), an alpha 1 receptor-selective antagonist), a wheat germ agglutinin-agarose gel, and a high performance steric exclusion liquid chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveals a peptide with an apparent Mr = 80,000 that co-migrates with the peptide labeled by the specific alpha 1-adrenergic receptor photoaffinity probe 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[125I]iodophenyl)pentanoyl] -1-piperazinyl] quinazoline. The specific activity (approximately 13,600 pmol of ligand binding/mg of protein) of purified receptor preparations is consistent with that expected for a pure peptide of Mr = 80,000 containing a single ligand binding site. Overall yields approximate 14% of initial crude particulate binding. The purified receptor preparations bind agonist and antagonist ligands with appropriate alpha 1-adrenergic specificity, stereoselectivity, and affinity. Peptide maps of the pure alpha 1-adrenergic receptor and the pure human platelet alpha 2-adrenergic receptor (Regan, J.W., Nakata, H., DeMarinis, R.M., Caron, M.G., and Lefkowitz, R.J. (1986) J. Biol. Chem. 261, 3894-3900) using several different proteases suggest that these two receptors show little if any structural homology.  相似文献   

18.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) induces a marked decrease in adhesion of MG-63 human osteosarcoma cells to laminin-coated surfaces, but does not significantly alter adhesion to fibronectin- or collagen-coated surfaces. We provide evidence that this effect is due to a switch in the repertoire of cell adhesion receptors in response to TGF-beta. MG-63 cells express high levels of alpha 3 beta 1-integrin, which is a polyspecific laminin/collagen/fibronectin receptor, and low levels of alpha 2 beta 1- and alpha 5 beta 1-integrins, which are collagen and fibronectin receptors, respectively. No other integrins of the beta 1-class could be detected in MG-63 cells. Treatment with TGF-beta 1 induces a marked (approximately 60%) decrease in the level of expression of alpha 3-integrin subunit mRNA and protein and a concomitant 8-fold increase in alpha 2-subunit expression. These responses become maximal 7-12 h after addition of TGF-beta 1 to the cells. Expression of alpha 5- and beta 1-integrin subunits also increases in response to TGF-beta 1, but to a lesser extent than alpha 2-subunit expression. Thus, as a result of TGF-beta action, the alpha 2 beta 1-collagen and alpha 5 beta 1-fibronectin receptors replace the alpha 3 beta 1-laminin/collagen/fibronectin receptor as the predominant integrins of the beta 1-class in MG-63 cells. These results suggest that one of the effects of TGF-beta is to modify the adhesive behavior of certain tumor cells by changing the binding specificity of the complement of integrins that they express.  相似文献   

20.
Lymphocyte attachment to fibronectin is mainly mediated by the interaction of alpha 5 beta 1 and alpha 4 beta 1 integrins with the RGD and CS-1/Hep II sites, respectively. We have recently shown that the anti-beta 1 mAb TS2/16 can convert the partly active alpha 4 beta 1 present on certain hemopoietic cells that recognizes CS-1 but not Hep II, to a high avidity form that binds both ligands. In this report we have studied whether mAb TS2/16 also affects alpha 4 beta 1 ligand specificity. Incubation of the B cell lines Ramos and Daudi (which lack alpha 5 beta 1) with mAb TS2/16 induced specific attachment to an 80-kD fragment which lacks CS-1 and Hep II and contains the RGD sequence. mAbs anti-alpha 4 and the synthetic peptides CS-1 and IDAPS inhibited adhesion to the 80-kD fragment thus implying alpha 4 beta 1 as the receptor for this fragment. Interestingly, the synthetic peptide GRGDSPC and a 15-kD peptic fibronectin fragment containing the RGD sequence also inhibited B cell adhesion to the 80-kD fragment. Because we have previously shown that RGD peptides do not affect the constitutive function of alpha 4 beta 1, we tested whether TS2/16- activated alpha 4 beta 1 acquired the capacity to recognize RGD. Indeed RGD peptides inhibited TS2/16-treated B cell adhesion to a 38-kD fragment containing CS-1 and Hep II but did not affect binding of untreated cells to this fragment. An anti-fibronectin mAb reactive with an epitope on or near the RGD sequence also efficiently inhibited cell adhesion to the 80-kD fragment, indicating that the RGD sequence is a novel adhesive ligand for activated alpha 4 beta 1. These results emphasize the role of alpha 4 beta 1 as a receptor with different ligand specificities according to the activation state, a fact that may be important for lymphocyte migration, localization, and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号