首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The specification of an appropriate number of cardiomyocytes from the lateral plate mesoderm requires a careful balance of both positive and negative regulatory signals. To identify new regulators of cardiac specification, we performed a phenotype-driven ENU mutagenesis forward genetic screen in zebrafish. In our genetic screen we identified a zebrafish ctr9 mutant with a dramatic reduction in myocardial cell number as well as later defects in primitive heart tube elongation and atrioventricular boundary patterning. Ctr9, together with Paf1, Cdc73, Rtf1 and Leo1, constitute the RNA polymerase II associated protein complex, PAF1. We demonstrate that the PAF1 complex (PAF1C) is structurally conserved among zebrafish and other metazoans and that loss of any one of the components of the PAF1C results in abnormal development of the atrioventricular boundary of the heart. However, Ctr9, Cdc73, Paf1 and Rtf1, but not Leo1, are required for the specification of an appropriate number of cardiomyocytes and elongation of the heart tube. Interestingly, loss of Rtf1 function produced the most severe defects, resulting in a nearly complete absence of cardiac precursors. Based on gene expression analyses and transplantation studies, we found that the PAF1C regulates the developmental potential of the lateral plate mesoderm and is required cell autonomously for the specification of cardiac precursors. Our findings demonstrate critical but differential requirements for PAF1C components in zebrafish cardiac specification and heart morphogenesis.  相似文献   

4.
A major approach to the study of development is to compare the phenotypes of normal and mutant individuals for a given genetic locus. Understanding the development of a complex metazoan therefore requires examination of many mutants. Relatively few organisms are being studied this way, and zebrafish is currently the best example of a vertebrate for which large-scale mutagenesis screens have successfully been carried out. The number of genes mutated in zebrafish that have been cloned expands rapidly, bringing new insights into a number of developmental pathways operating in vertebrates. Here, we discuss work on zebrafish mutants affecting gastrulation and patterning of the early embryo. Gastrulation is orchestrated by the dorsal organizer, which forms in a region where maternally derived beta-catenin signaling is active. Mutation in the zygotic homeobox gene bozozok disrupts the organizer genetic program and leads to severe axial deficiencies, indicating that this gene is a functional target of beta-catenin signaling. Once established, the organizer releases inhibitors of ventralizing signals, such as BMPs, and promotes dorsoanterior fates within all germ layers. In zebrafish, several mutations affecting dorsal-ventral (D/V) patterning inactivate genes functioning in the BMP pathway, stressing the central role of this pathway in the gastrula embryo. Cells derived from the organizer differentiate into several axial structures, such as notochord and prechordal mesoderm, which are thought to induce various fates in adjacent tissues, such as the floor plate, after the completion of gastrulation. Studies with mutants in nodal-related genes, in one-eyed pinhead, which is required for nodal signaling, and in the Notch pathway reveal that midline cell fate specification is, in fact, initiated during gastrulation. Furthermore, the organizer coordinates morphogenetic movements, and zebrafish mutants in T-box mesoderm-specific genes help clarify the mechanism of convergence movements required for the formation of axial and paraxial mesoderm.  相似文献   

5.
6.
One of the most powerful tools used to gain insight into complex developmental processes is the analysis of mosaic embryos. A mosaic is defined as an organism that contains cells of more than one genotype, usually wild-type and mutant. It is the interplay between wild-type and mutant cells in the mosaic that reveals information about the normal function of the mutated gene. Mosaic analysis has been utilized extensively in Caenorhabditis elegans, Drosophila, mice, and zebrafish to elucidate when, where, and how a gene acts during development. In the zebrafish, mosaic analysis has been used to dissect a number of different developmental processes, including gastrulation movements, mesoderm and endoderm specification, neuronal patterning and migration, axon pathfinding, angiogenesis, and cardiac, retinal, and neural crest development. Mosaic analysis is a particularly effective method for understanding gene function in the zebrafish, a model organism particularly suited to forward genetic, molecular, and classical embryological approaches. These attributes, when combined with the accessibility and optical clarity of the zebrafish embryo, facilitate the real time observation of individual cell behaviors and interactions within mosaic embryos.  相似文献   

7.
Heparan sulphate proteoglycans (HSPGs) are known to be crucial for signalling by the secreted Wnt, Hedgehog, Bmp and Fgf proteins during invertebrate development. However, relatively little is known about their effect on developmental signalling in vertebrates. Here, we report the analysis of daedalus, a novel zebrafish pectoral fin mutant. Positional cloning identified fgf10 as the gene disrupted in daedalus. We find that fgf10 mutants strongly resemble zebrafish ext2 and extl3 mutants, which encode glycosyltransferases required for heparan sulphate biosynthesis. This suggests that HSPGs are crucial for Fgf10 signalling during limb development. Consistent with this proposal, we observe a strong genetic interaction between fgf10 and extl3 mutants. Furthermore, application of Fgf10 protein can rescue target gene activation in fgf10, but not in ext2 or extl3 mutants. By contrast, application of Fgf4 protein can activate target genes in both ext2 and extl3 mutants, indicating that ext2 and extl3 are differentially required for Fgf10, but not Fgf4, signalling during limb development. This reveals an unexpected specificity of HSPGs in regulating distinct vertebrate Fgfs.  相似文献   

8.
During vertebrate development, the thyroid gland undergoes a unique relocalisation from its site of induction to a distant species-specific position in the cervical mesenchyme. We have analysed thyroid morphogenesis in wild-type and mutant zebrafish and mice, and find that localisation of growing thyroid tissue along the anteroposterior axis in zebrafish is linked to the development of the ventral aorta. In grafting experiments, ectopic vascular cells influence the localisation of thyroid tissue cell non-autonomously, showing that vessels provide guidance cues in zebrafish thyroid morphogenesis. In mouse thyroid development, the midline primordium bifurcates and two lobes relocalise cranially along the bilateral pair of carotid arteries. In hedgehog-deficient mice, thyroid tissue always develops along the ectopically and asymmetrically positioned carotid arteries, suggesting that, in mice (as in zebrafish), co-developing major arteries define the position of the thyroid. The similarity between zebrafish and mouse mutant phenotypes further indicates that thyroid relocalisation involves two morphogenetic phases, and that variation in the second phase accounts for species-specific differences in thyroid morphology. Moreover, the involvement of vessels in thyroid relocalisation sheds new light on the interpretation of congenital thyroid defects in humans.  相似文献   

9.
10.
11.
Cell interactions involving Notch signaling are required for the demarcation of tissue boundaries in both invertebrate and vertebrate development. Members of the Fringe gene family encode beta-1,3 N-acetyl-glucosaminyltransferases that function to refine the spatial localization of Notch-receptor signaling to tissue boundaries. In this paper we describe the isolation and characterization of the zebrafish (Danio rerio) homologue of the lunatic fringe gene (lfng). Zebrafish lfng is generally expressed in equivalent structures to those reported for the homologous chick and mouse genes. These sites include expression along the A-P axis of the neural tube, within the lateral plate mesoderm, in the presomitic mesoderm and the somites and in specific rhombomeres of the hindbrain; however, within these general expression domains species-specific differences in lfng expression exist. In mouse, Lfng is expressed in odd-numbered rhombomeres, whereas in zebrafish, expression occurs in even-numbered rhombomeres. In contrast to reports in both mouse and chicken embryos showing a kinematic cyclical expression of Lfng mRNA in the presomitic paraxial mesoderm, we find no evidence for a cyclic pattern of expression for the zebrafish lfng gene; instead, the zebrafish lfng is expressed in two static stripes within the presomitic mesoderm. Nevertheless, in zebrafish mutants affecting the correct formation of segment boundaries in the hindbrain and somites, lfng expression is aberrant or lost.  相似文献   

12.
Mammalian lefty and zebrafish antivin form a subgroup of the TGF beta superfamily. We report that mouse mutants for lefty2 have an expanded primitive streak and form excess mesoderm, a phenotype opposite to that of mutants for the TGF beta gene nodal. Analogously, overexpression of Antivin or Lefty2 in zebrafish embryos blocks head and trunk mesoderm formation, a phenotype identical to that of mutants caused by loss of Nodal signaling. The lefty2 mutant phenotype is partially suppressed by heterozygosity for nodal. Similarly, the effects of Antivin and Lefty2 can be suppressed by overexpression of the nodal-related genes cyclops and squint or the extracellular domain of ActRIIB. Expression of antivin is dependent on Nodal signaling, revealing a feedback loop wherein Nodal signals induce their antagonists Lefty2 and Antivin to restrict Nodal signaling during gastrulation.  相似文献   

13.
14.
15.
16.
Na,K-ATPase is essential for embryonic heart development in the zebrafish   总被引:2,自引:0,他引:2  
Na,K-ATPase is an essential gene maintaining electrochemical gradients across the plasma membrane. Although previous studies have intensively focused on the role of Na,K-ATPase in regulating cardiac function in the adults, little is known about the requirement for Na,K-ATPase during embryonic heart development. Here, we report the identification of a zebrafish mutant, heart and mind, which exhibits multiple cardiac defects, including the primitive heart tube extension abnormality, aberrant cardiomyocyte differentiation, and reduced heart rate and contractility. Molecular cloning reveals that the heart and mind lesion resides in the alpha1B1 isoform of Na,K-ATPase. Blocking Na,K-ATPase alpha1B1 activity by pharmacological means or by morpholino antisense oligonucleotides phenocopies the patterning and functional defects of heart and mind mutant hearts, suggesting crucial roles for Na,K-ATPase alpha1B1 in embryonic zebrafish hearts. In addition to alpha1B1, the Na,K-ATPase alpha2 isoform is required for embryonic cardiac patterning. Although the alpha1B1 and alpha2 isoforms share high degrees of similarities in their coding sequences, they have distinct roles in patterning zebrafish hearts. The phenotypes of heart and mind mutants can be rescued by supplementing alpha1B1, but not alpha2, mRNA to the mutant embryos, demonstrating that alpha1B1 and alpha2 are not functionally equivalent. Furthermore, instead of interfering with primitive heart tube formation or cardiac chamber differentiation, blocking the translation of Na,K-ATPase alpha2 isoform leads to cardiac laterality defects.  相似文献   

17.
Many mutants that disrupt zebrafish embryonic pigment pattern have been isolated, and subsequent cloning of the mutated genes causing these phenotypes has contributed to our understanding of pigment cell development. However, few mutants have been identified that specifically affect development of the adult pigment pattern. Through a mutant screen for adult pigment pattern phenotypes, we identified pyewacket (pye), a novel zebrafish mutant in which development of the adult caudal fin pigment pattern is aberrant. Specifically, pye mutants have fin melanocyte pigment pattern defects and fewer xanthophores than wild-type fins. We mapped pye to an interval where a single gene, the zebrafish ortholog of the human gene DHRSX, is present. pye will be an informative mutant for understanding how xanthophores and melanocytes interact to form the pigment pattern of the adult zebrafish fin.  相似文献   

18.
19.
The three mammalian Raf serine/threonine protein kinases mediate the transduction of proliferative and differentiative signals from cell surface receptors to the nucleus. In vertebrates, Raf signaling has been implicated in the progression of mouse embryos through the two-cell stage and in the induction of posterior mesoderm. However, mouse embryos mutant for each of the Raf genes exhibit no developmental defects before mid-gestation. Here we describe the phenotype of mouse mutants with different combinations of mutant Craf-1 and Braf alleles. Our results show that Raf signaling is indeed indispensable for normal development beyond the blastocyst stage. However, due to a significant redundancy between Craf-1 and Braf, either gene is sufficient for normal development until mid-gestation. The molecular and developmental mechanisms for this redundancy were investigated by monitoring the expression of Raf genes throughout embryogenesis and by biochemical studies in mutant cell lines.  相似文献   

20.
Segmentation in the vertebrate embryo is evident within the paraxial mesoderm in the form of somites, which are repeated structures that give rise to the vertebrae and muscle of the trunk and tail. In the zebrafish, our genetic screen identified two groups of mutants that affect somite formation and pattern. Mutations of one class, the fss-type mutants, disrupt the formation of the anterior-posterior somite boundaries during somitogenesis. However, segmentation within the paraxial mesoderm is not completely eliminated in these mutants. Irregular somite boundaries form later during embryogenesis and, strikingly, the vertebrae are not fused. Here, we show that formation of the irregular somite boundaries in these mutants is dependent upon the activity of a second group of genes, the you-type genes, which include sonic you, the zebrafish homologue of the Drosophila segment polarity gene, sonic hedgehog. Further to characterize the defects caused by the fss-type mutations, we examined their effects on the expression of her1, a zebrafish homologue of the Drosophila pair-rule gene hairy. In wild-type embryos, her1 is expressed in a dynamic, repeating pattern, remarkably similar to that of its Drosophila and Tribolium counterparts, suggesting that a pair-rule mechanism also functions in the segmentation of the vertebrate paraxial mesoderm. We have found that the fss-type mutants have abnormal pair-rule patterning. Although a her1 mutant could not be identified, analysis of a double mutant that abolishes most her1 expression suggests that a her1 mutant may not display a pair-rule phenotype analogous to the hairy phenotype observed in Drosophila. Cumulatively, our data indicate that zebrafish homologues of both the Drosophila segment polarity genes and pair-rule genes are involved in segmenting the paraxial mesoderm. However, both the relationship between these two groups of genes within the genetic heirarchy governing segmentation and the precise roles that they play during segmentation likely differ significantly between the two organisms. Dev. Genet. 23:65–76, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号